Autosomal recessive parkinsonism is a genetic condition closely resembling Parkinson disease, the only distinguishing features being an earlier age at onset and a slower disease progression. Three causative genes have been identified so far. While exon rearrangements are frequently encountered in the Parkin gene, most PINK1 mutations are represented by single nucleotide changes. We report a sporadic parkinsonian patient carrying a deletion of the entire PINK1 gene and a splice site mutation (g.15445_15467del23) which produces several aberrant mRNAs. This report expands the genotypic spectrum of PINK1 mutations, with relevant implications for molecular analysis of this gene.
Complex chromosomal rearrangements with more than two breakpoints are rare. We report on a 5-year-old girl, evaluated because of psychomotor delay, ectrodactyly of right hand and feet, craniofacial dysmorphic features, cleft palate, deafness, and tetralogy of Fallot. A standard karyotype suggested a small intrachromosomal duplication of chromosome 7q. The chromosomal rearrangement was characterized by mBAND, which disclosed a reciprocal interstitial translocation t(7;8)(q21q22;q23q24). FISH analysis and array-CGH analysis showed a paracentric inversion of 7q and a microdeletion of 7q21.13. The parents had normal chromosomes. The deletion found in the present patient confirms that candidate region of ectrodactyly-deafness (OMIM 220600) maps to 7q21 and suggests new candidate genes for that disorder. This patient also had facial features reminiscent of tricho-rhino-phalangeal syndrome and one chromosome breakpoint involved band 8q24, a locus for this disorder. In addition, FOG1 gene maps to 8q23 and has been implicated in a subset of subjects with tretralogy of Fallot. We suggest that the aberration of 8q may have contributed to her facial and cardiac findings.
Brody disease is a rare muscle disorder characterized by exercise-induced impairment in muscle relaxation, due to a markedly reduced influx of calcium ions in the sarcoplasmic reticulum. A subset of autosomal recessive families harbour mutations in the ATP2A1 gene, encoding the fast-twitch skeletal muscle sarcoplasmic reticulum Ca 2 þ ATPase (SERCA1). Rare autosomal dominant families have been described, in which ATP2A1 was excluded as the causative gene, further supporting genetic heterogeneity. We report four individuals from a three-generation Italian family with a clinical phenotype of Brody disease, in which linkage analysis excluded ATP2A1 as the responsible gene. The disease cosegregates in an autosomal dominant fashion with an apparently balanced constitutional chromosome translocation (2;7)(p11.2;p12.1), suggesting a causal relationship between the rearrangement and the phenotype. FISH analysis using YAC and PAC clones as probes refined the breakpoint regions to genomic segments of about 164 and 120 kb, respectively, providing a possible clue to pinpoint the location of a novel gene responsible for this rare muscle disorder.
In recent years, subtelomeric rearrangements have been identified as a major cause of multiple congenital anomalies/mental retardation syndromes. Currently, more than 2,500 individuals with mental retardation have been tested and reported in whom subtelomeric rearrangements were detected ranging from 2% to 29%. Therefore, subtelomeric FISH analysis is indicated as a second tier test after high-resolution G-banding analysis in patients with otherwise unexplained developmental delay/mental retardation and/or multiple congenital anomalies. We describe a patient and her three maternal female cousins, all showing an undiagnosed MCA/MR syndrome, associated with the same complex subtelomeric rearrangement. Subtelomeric FISH testing performed between 3(1/2) and 18 years after the initial karyotype showed, in all four patients, distal trisomy 3q and distal monosomy 10q as follows: 46,XX,ish der(10)t(3;10)(q29;q26.3)mat(D10S2488+,D10S2490-, D3S1272+,D10Z1+). Parental subtelomeric FISH analysis showed that the proposita's mother and three of four brothers and one of two sisters had a cryptic balanced 3:10 telomere translocation. The three brothers with the balanced translocation were father to one each of the three proband's cousins. All four affected girls showed a similar phenotype with pre/postnatal growth retardation, microcephaly, severe developmental delay/mental retardation, poor/absent speech, and a distinct pattern of malformation. On examination there were coarsening of facial features with low fronto-temporal hairline; thick eyebrows; bilateral epicanthal folds; hypertelorism; prominent nose with squared nasal root and narrow alar base; low-set posteriorly rotated large ears with a prominent anthelix; high arched palate; prominent chin; hands/feet brachydactyly; bilateral squint; hypotonia; and muscle hypotrophy. A slow overall improvement was seen in all patients over time. To our knowledge, this complex subtelomeric rearrangement in our patients has never been reported so far. Monosomy 10q has recently been described either isolated or as part of a complex rearrangement involving telomeres other than the 3q. Trisomy 3q29 has not yet been reported, but our patients resembled cases with 3q26 trisomy suggesting that the critical region of duplication for this phenotype is in 3q29.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.