The natural speciation of Mn (0.19 g/kg), Ni (46 mg/kg) and Zn (42 mg/kg) in the argillic horizon (120 cm depth, pH = 5.6) of an Ultisol from a paddy soil in northern Taiwan was investigated by advanced X-ray synchrotron techniques. Microchemical associations were imaged by synchrotron-based X-ray microfluorescence, host minerals were identified by standard and micrometer-resolved X-ray diffraction, and the local coordination environment of Mn, Ni, and Zn was probed using extended X-ray absorption fine structure (EXAFS) spectroscopy on a powdered sample and a soil thin section, and polarized EXAFS spectroscopy on a highly textured self-supporting clay film from the <2 µm fraction of the soil.
[1] We present a multitechnique approach to experimentally determine the elastic anisotropy of polycrystalline hcp Fe at high pressure. Directional phonon measurements from inelastic X-ray scattering on a sample with lattice preferred orientation at 52 GPa in a diamond anvil cell were coupled with X-ray diffraction data to determine the elastic tensor. Comparison of the results from this new method with the elasticity determined by lattice strain analysis of radial X-ray diffraction measurements showed significant differences, highlighting the importance of strength anisotropy in hcp Fe. At 52 GPa, we found that a method which combines results from inelastic scattering and pressure-volume measurements gives a shape in the velocity anisotropy close to sigmoidal (with a faster c and slower a axis) a smaller magnitude in the anisotropy and compared to velocities based on the lattice strain method which gives a bell shape velocity distribution with the fast direction between the c and a axes. We used additional results from nuclear resonant inelastic X-ray scattering to constrain errors and provide additional validation of the accuracy of our results.
Zinc oxide was added during hydration of alite (C3S) as an analogue for solidification/stabilization by cement of metal-bearing hazardous waste. Curing of samples was stopped at various intervals between 8 h and 100 d, and the reaction products were analyzed by both X-ray diffraction (XRD) and X-ray absorption spectroscopy (EXAFS at Zn, Ca, and Si K-edges). Calcium zincate hydrate (CaZn2(OH)6 x 2H2O) initially formed together with calcium silicate hydrate (CSH) vanishes from X-ray diffractograms after 14 d, and no other crystalline Zn-bearing phase could be detected thereafter. EXAFS Zn K-edge data analysis reveals that Zn(O,OH)4 tetrahedra continue to determine the first shell coordination. However, a new Zn-Si bond appears in the second coordination shell as indicated by both Zn K-edge and Si K-edge EXAFS. Together with the Ca-Zn and Ca-Ca shells derived from the Ca K-edge EXAFS spectra, a structural model for the site occupation of Zn in CSH is proposed, whereby the Zn(O,OH)4 tetrahedra are bound in layer rather than interlayer positions substituting for the silicate bridging tetrahedra and/or at terminal silicate chain sites. This structural model enables ultimately the formulation of a thermodyamic Lippmann model to predict the aqueous solubility of Zn in solid solution with a CSH phase of a Ca/Si ratio fixed to unity.
Diamond anvil cells may not only impose pressure upon a sample but also a compressive stress that produces elastic and plastic deformation of polycrystalline samples. The plastic deformation may result in texture development if the material deforms by slip or mechanical twinning, or if grains have a non-equiaxed shape. In radial diffraction geometry, texture is revealed by variation of intensity along Debye rings relative to the compression direction. Diffraction images (obtained by CCD or image plate) can be used to extract quantitative texture information. Currently the most elegant and powerful method is a modified Rietveld technique as implemented in the software package MAUD. From texture data one can evaluate the homogeneity of strain in a diamond anvil cell, the strain magnitude and deformation mechanisms, the latter by comparing observed texture patterns with results from polycrystal plasticity simulations. Some examples such as olivine, magnesiowuestite, MgSiO(3) perovskite and ε-iron are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.