Diabetes mellitus is a metabolic disorder characterized by hyperglycemia. The two main forms of the disease are distinguished by different pathogenesis, natural histories, and population distributions and indicated as either type 1 (T1DM) or type 2 diabetes mellitus (T2DM). It is well established that T1DM is an autoimmune disease whereby beta-cells of pancreatic islets are destroyed leading to loss of endogenous insulin production. Albeit less dramatic, beta-cell mass (BCM) also drops in T2DM. Therefore, it is realistic to expect that noninvasive measures of BCM might provide useful information in the diabetes-care field. Preclinical studies have demonstrated that BCM measurements by positron emission tomography scanning, using the vesicular monoamine transporter type 2 (VMAT2) as a tissue-specific surrogate marker of insulin production and [11C] Dihydrotetrabenazine (DTBZ) as the radioligand specific for this molecule, is feasible in animal models. Unfortunately, the mechanisms underlying beta-cell-specific expression of VMAT2 are still largely unexplored, and a much better understanding of the regulation of VMAT2 gene expression and of its function in beta-cells will be required before the full utility of this technique in the prediction and treatment of individuals with diabetes can be understood. In this review, we summarize much of what is understood about the regulation of VMAT2 and identify questions whose answers may help in understanding what measurements of VMAT2 density mean in the context of diabetes.
Despite different embryological origins, islet b-cells and neurons share the expression of many genes and display multiple functional similarities. One shared gene product, vesicular monoamine transporter type 2 (VMAT2, also known as SLC18A2), is highly expressed in human b-cells relative to other cells in the endocrine and exocrine pancreas. Recent reports suggest that the monoamine dopamine is an important paracrine and/or autocrine regulator of insulin release by b-cells. Given the important role of VMAT2 in the economy of monoamines such as dopamine, we investigated the possible role of VMAT2 in insulin secretion and glucose metabolism. Using a VMAT2-specific antagonist, tetrabenazine (TBZ), we studied glucose homeostasis, insulin secretion both in vivo and ex vivo in cultures of purified rodent islets. During intraperitoneal glucose tolerance tests, control rats showed increased serum insulin concentrations and smaller glucose excursions relative to controls after a single intravenous dose of TBZ. One hour following TBZ administration we observed a significant depletion of total pancreas dopamine. Correspondingly, exogenous L-3,4-dihydroxyphenylalanine reversed the effects of TBZ on glucose clearance in vivo. In in vitro studies of rat islets, a significantly enhanced glucose-dependent insulin secretion was observed in the presence of dihydrotetrabenazine, the active metabolite of TBZ. Together, these data suggest that VMAT2 regulates in vivo glucose homeostasis and insulin production, most likely via its role in vesicular transport and storage of monoamines in b-cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.