In recent times, the methanol was employed in numerous innovative applications and is a key compound widely used as a building block or intermediate for producing synthetic hydrocarbons, solvents, energy storage medium and fuel. It is a source of clean, sustainable energy that can be produced from traditional and renewable sources: natural gas, coal, biomass, landfill gas and power plant or industrial emissions. An innovative methanol production process from coal gasification is proposed in this work. A suitable comparison between the traditional coal to methanol process and the novel one is provided and deeply discussed. The most important features, with respect to the traditional ones, are the lower carbon dioxide emissions (about 0.3%) and the higher methanol production (about 0.5%) without any addition of primary sources. Moreover, it is demonstrated that a coal feed/fuel with a high sulfur content allows higher reductions of carbon dioxide emissions. The key idea is to convert hydrogen sulfide and carbon dioxide into syngas (a mixture of hydrogen and carbon monoxide) by means of a regenerative thermal reactor. This is the Acid Gas to Syngas technology, a completely new and effective route of processing acid gases. The main concept is to feed an optimal ratio of hydrogen sulphide and carbon monoxide and to preheat the inlet acid gas before the combustion. The reactor is simulated using a detailed kinetic scheme.
In this paper, we present the final results from the research project “Urban Abacus of Building Energy Performances (Abaco Urbano Energeticodegli Edifci–AUREE)” aimed at supporting the renovation process and energy efficiency enhancement of urban building stocks. The crux of the AUREE project is a Web–GIS GeoBlog portal with customized semantic dashboards aimed at sharing information on an urban built environment and promoting the participation of local stakeholders in its improvement. As the latest development of this research, a workflow that integrates the AUREE portal with BIM authoring and an open-source IoT platform is implemented and applied to an experimental case study concerning a public building in Carbonia (Italy). The headquarters of the Sotacarbo Sustainable Energy Research Center was selected as the case study. The presented results proved that it was possible to create a valid open system, which was accessible to both specialist and unskilled users, and aimed at guiding, through a progressive knowledge deepening, common end-users toward proper conscious “energy behaviors” as well as public administrations and decision-makers toward sustainable facility management. Later, the proposed open system could also be suitable to be used as an effective tool to support the rising “energy communities”.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.