Cell cytosol and the different subcellular organelles house the most important biochemical processes that control cell functions. Effective delivery of bioactive agents within cells is expected to have an enormous impact on both gene therapy and the future development of new therapeutic and/or diagnostic strategies based on single-cell-bioactive-agent interactions. Herein a biomimetic nanovector is reported that is able to enter cells, escape from the complex endocytic pathway, and efficiently deliver actives within clinically relevant cells without perturbing their metabolic activity. This nanovector is based on the pH-controlled self-assembly of amphiphilic copolymers into nanometer-sized vesicles (or polymersomes). The cellular-uptake kinetics can be regulated by controlling the surface chemistry, the polymersome size, and the polymersome surface topology. The latter is controlled by the extent of polymer-polymer phase separation within the external envelope of the polymersome.
Nature has the exquisite ability to design specific surface patterns and topologies on both the macro- and nanolength scales that relate to precise functions. Following a biomimetic approach, we have engineered fully synthetic nanoparticles that are able to self-organize their surface into controlled domains. We focused on polymeric vesicles or "polymersomes"; enclosed membranes formed via self-assembly of amphiphilic block copolymers in water. Exploiting the intrinsic thermodynamic tendency of dissimilar polymers to undergo phase separation, we mixed different vesicle-forming block copolymers in various proportions in order to obtain a wide range of polymersomes with differing surface domains. Using a combination of confocal laser scanning microscopy studies of micrometer-sized polymersomes, and electron microscopy, atomic force microscopy, and fluorescence spectroscopy on nanometer-sized polymersomes, we find that the domains exhibit similar shapes on both the micro- and nanolength scales, with dimensions that are linearly proportional to the vesicle diameter. Finally, we demonstrate that such control over the surface "patchiness" of these polymersomes determines their cell internalization kinetics for live cells.
The bulk mechanical properties of soft materials have been studied widely, but it is unclear to what extent macroscopic behavior is reflected in nanomechanics. Using an atomic force microscopy (AFM) imaging method called force spectroscopy mapping (FSM), it is possible to map the nanoscopic spatial distribution of Young's modulus, i.e. "stiffness," and determine if soft or stiff polymer domains exist to correlate nano-and macro-mechanics. Two model hydrogel systems typically used in cell culture and polymerized by a free radical polymerization process, i.e. poly (vinyl pyrrolidone) (PVP) and poly(acrylamide) (PAam) hydrogels, were found to have significantly different nanomechanical behavior despite relatively similar bulk stiffness and roughness. PVP gels contained a large number of soft and stiff nanodomains, and their size was inversely related to crosslinking density and changes in crosslinking efficiency within the hydrogel. In contrast, PAam gels displayed small nanodomains occuring at low frequency, indicating relatively uniform polymerization. Given the responsiveness of cells to changes in gel stiffness, inhomogeneities found in the PVP network indicate that careful nanomechanical characterization of polymer substrates is necessary to appreciate complex cell behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.