Water-soluble and insoluble fractions of airborne particulate matter (PM) exhibit different toxicological potentials and peculiar mechanisms of action in biological systems. However, most of the research on the oxidative potential (OP) of PM is focused exclusively on its water-soluble fraction, since experimental criticisms were encountered for detaching the whole PM (soluble and insoluble species) from field filters. However, to estimate the actual potential effects of PM on human health, it is essential to assess the OP of both its water-soluble and insoluble fractions. In this study, to estimate the total OP (TOP), an efficient method for the detachment of intact PM10 from field filters by using an electrical toothbrush was applied to 20 PM10 filters in order to obtain PM10 water suspensions to be used for the DCFH, AA and DTT oxidative potential assays (OPDCFH, OPAA and OPDTT). The contribution of the insoluble PM10 to the TOP was evaluated by comparing the TOP values to those obtained by applying the three OP assays to the water-soluble fraction of 20 equivalent PM10 filters. The OP of the insoluble fraction (IOP) was calculated as the difference between the TOP and the WSOP. Moreover, each PM10 sample was analyzed for the water-soluble and insoluble fractions of 10 elements (Al, Cr, Cs, Cu, Fe, Li, Ni, Rb, Sb, Sn) identified as primary elemental tracers of the main emission sources in the study area. A principal component analysis (PCA) was performed on the data obtained to identify the predominant sources for the determination of TOP, WSOP, and IOP. Results showed that water-soluble PM10 released by traffic, steel plant, and biomass burning is mainly responsible for the generation of the TOP as well as of the WSOP. This evidence gave strength to the reliability of the results from OP assays performed only on the water-soluble fraction of PM. Lastly, the IOPDCFH and IOPDTT were found to be principally determined by insoluble PM10 from mineral dust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.