Convex relaxations have been instrumental in solvability of constraint satisfaction problems (CSPs), as well as in the three different generalisations of CSPs: valued CSPs, infinite-domain CSPs, and most recently promise CSPs. In this work, we extend an existing tractability result to the three generalisations of CSPs combined: We give a sufficient condition for the combined basic linear programming and affine integer programming relaxation for exact solvability of promise valued CSPs over infinite-domains. This extends a result of Brakensiek and Guruswami (SODA’20) for promise (non-valued) CSPs (on finite domains).
In this paper, we find the ω-value of the generators of any numerical semigroup with embedding dimension three. This allows us to determine all possible orderings of the ω-values of the generators. In addition, we relate the ω-value of the numerical semigroup to its catenary degree.
Many combinatorial optimisation problems can be modelled as valued constraint satisfaction problems. In this paper, we present a polynomial-time algorithm solving the valued constraint satisfaction problem for a fixed number of variables and for piecewise linear cost functions. Our algorithm finds the infimum of a piecewise linear function and decides whether it is a proper minimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.