Antineutrophil cytoplasmic antibodies (ANCAs) target proteins normally retained within neutrophils, indicating that cell death is involved in the autoimmunity process. Still, ANCA pathogenesis remains obscure. ANCAs activate neutrophils inducing their respiratory burst and a peculiar form of cell death, named NETosis, characterized by formation of neutrophil extracellular traps (NETs), decondensed chromatin threads decorated with cytoplasmic proteins endorsed with antimicrobial activity. NETs have been consistently detected in ANCA-associated small-vessel vasculitis, and this association prompted us to test whether the peculiar structure of NET favors neutrophil proteins uploading into myeloid dendritic cells and the induction of ANCAs and associated autoimmunity. Here we show that myeloid DCs uploaded with and activated by NET components induce ANCA and autoimmunity when injected into naive mice. DC uploading and autoimmunity induction are prevented by NET treatment with DNAse, indicating that NET structural integrity is needed to maintain the antigenicity of cytoplasmic proteins. We found NET intermingling with myeloid dendritic cells also positive for neutrophil myeloperoxidase in myeloperoxidase-ANCA-associated microscopic poliangiitis providing a potential correlative picture in human pathology. These data provide the first demonstration that NET structures are highly immunogenic such to trigger adaptive immune response relevant for autoimmunity.
Altered expression of matricellular proteins can become pathogenic in the presence of persistent perturbations in tissue homeostasis. Here, we show that autoimmunity associated with Fas mutation was exacerbated and transitioned to lymphomagenesis in the absence of SPARC (secreted protein acidic rich in cysteine). The absence of SPARC resulted in defective collagen assembly, with uneven compartmentalization of lymphoid and myeloid populations within secondary lymphoid organs (SLO), and faulty delivery of inhibitory signals from the extracellular matrix. These conditions promoted aberrant interactions between neutrophil extracellular traps and CD5 + B cells, which underwent malignant transformation due to defective apoptosis under the pressure of neutrophil-derived trophic factors and NF-κB activation. Furthermore, this model of defective stromal remodeling during lymphomagenesis correlates with human lymphomas arising in a SPARC-defective environment, which is prototypical of CD5 + B-cell chronic lymphocytic leukemia (CLL). SIGNIFICANCE:These results reveal the importance of stromal remodeling in SLO to accommodate autoimmune lymphoproliferation while preventing lymphomagenesis. Our fi ndings reveal a link between SPARC, collagen deposition, and the engagement of the immune-inhibitory receptor LAIR-1 on neutrophils, neutrophil cell death via NETosis, and the stimulation of CD5 + B-cell proliferation. Moreover, we show that SPARC defi ciency promotes CD5 + B-cell lymphomagenesis and is correlated with CLL in humans. Cancer Discov; 4(1);
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.