Smartwatches provide technology-based assessments in Parkinson’s Disease (PD). It is necessary to evaluate their reliability and accuracy in order to include those devices in an assessment. We present unique results for sensor validation and disease classification via machine learning (ML). A comparison setup was designed with two different series of Apple smartwatches, one Nanometrics seismometer and a high-precision shaker to measure tremor-like amplitudes and frequencies. Clinical smartwatch measurements were acquired from a prospective study including 450 participants with PD, differential diagnoses (DD) and healthy participants. All participants wore two smartwatches throughout a 15-min examination. Symptoms and medical history were captured on the paired smartphone. The amplitude error of both smartwatches reaches up to 0.005 g, and for the measured frequencies, up to 0.01 Hz. A broad range of different ML classifiers were cross-validated. The most advanced task of distinguishing PD vs. DD was evaluated with 74.1% balanced accuracy, 86.5% precision and 90.5% recall by Multilayer Perceptrons. Deep-learning architectures significantly underperformed in all classification tasks. Smartwatches are capable of capturing subtle tremor signs with low noise. Amplitude and frequency differences between smartwatches and the seismometer were under the level of clinical significance. This study provided the largest PD sample size of two-hand smartwatch measurements and our preliminary ML-evaluation shows that such a system provides powerful means for diagnosis classification and new digital biomarkers, but it remains challenging for distinguishing similar disorders.
Smartwatches provide technology-based assessments in Parkinson’s disease (PD). We present results for sensor validation and disease classification via Machine Learning (ML). A comparison setup was designed with two different series of Apple smartwatches, one Nanometrics seismometer and a high-precision shaker to measure tremor-like amplitudes and frequencies. Clinical smartwatch measurements were acquired from a prospective study including 450 participants with PD, differential diagnoses (DD) and healthy participants. All participants wore two smartwatches and within a 15-min examination. Symptoms and medical history were captured on the paired smartphone. A broad range of different ML classifiers were cross-validated. Amplitude and frequency differences between smartwatches and the seismometer were under the level of clinical significance. The most advanced task of distinguishing PD vs DD was evaluated with 74,1% balanced accuracy, 86,5% precision and 90,5% recall by Multilayer Perceptrons. Deep Learning architectures significantly underperformed in all classification tasks. Smartwatches are capable of capturing subtle-tremor signs with low noise. This study provided the largest PD sample size of two-hand smartwatch measurements and our preliminary ML-evaluation shows that such a system provides powerful means for diagnosis classification and new digital biomarkers but it remains challenging for distinguishing similar disorders.
A growing number of studies have been researching biomarkers of Parkinson’s disease (PD) using mobile technology. Many have shown high accuracy in PD classification using machine learning (ML) and voice records from the mPower study, a large database of PD patients and healthy controls. Since the dataset has unbalanced class, gender and age distribution, it is important to consider appropriate sampling when assessing classification scores. We analyse biases, such as identity confounding and implicit learning of non-disease-specific characteristics and present a sampling strategy to highlight and prevent these problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.