Nuclear transfer stem cells hold considerable promise in the field of regenerative medicine and cell-based drug discovery. In this study, a total of 29 oocytes were obtained from three young (20 -24 years old) reproductive egg donors who had been successful in previous cycles. These oocytes, deemed by intended parents to be in excess of their reproductive needs, were donated for research without financial compensation by both the egg donor and intended parents after receiving informed consent. All intended parents successfully achieved ongoing pregnancies with the oocytes retained for reproductive purposes. Mature oocytes, obtained within 2 hours following transvaginal aspiration, were enucleated using one of two methods, extrusion or aspiration, after 45 minutes of incubation in cytochalasin B. Rates of oocyte lysis or degeneration did not differ between the two methods. Somatic cell nuclear transfer (SCNT) embryos were constructed using two established adult male fibroblast lines of normal karyotype. High rates of pronuclear formation (66%), early cleavage (47%), and blastocyst (23%) development were observed following incubation in standard in vitro fertilization culture media. One cloned blastocyst was confirmed by DNA and mitochondrial DNA fingerprinting analyses, and DNA fingerprinting of two other cloned blastocysts indicated that they were also generated by SCNT. Blastocysts were also obtained from a limited number of parthenogenetically activated oocytes. This study demonstrates, for the first time, that SCNT can produce human blastocyst-stage embryos using nuclei obtained from differentiated adult cells and provides new information on methods that may be needed for a higher level of efficiency for human nuclear transfer. STEM CELLS 2008;26:485-493 Disclosure of potential conflicts of interest is found at the end of this article.
With its ability to catabolize a wide variety of carbon sources and a growing engineering toolkit, Pseudomonas putida KT2440 is emerging as an important chassis organism for metabolic engineering. Despite advances in our understanding of this organism, many gaps remain in our knowledge of the genetic basis of its metabolic capabilities. These gaps are particularly noticeable in our understanding of both fatty acid and alcohol catabolism, where many paralogs putatively coding for similar enzymes co-exist making biochemical assignment via sequence homology difficult. To rapidly assign function to the enzymes responsible for these metabolisms, we leveraged Random Barcode Transposon Sequencing (RB-TnSeq). Global fitness analyses of transposon libraries grown on 13 fatty acids and 10 alcohols produced strong phenotypes for hundreds of genes. Fitness data from mutant pools grown on varying chain length fatty acids indicated specific enzyme substrate preferences, and enabled us to hypothesize that DUF1302/DUF1329 family proteins potentially function as esterases. From the data we also postulate catabolic routes for the two biogasoline molecules isoprenol and isopentanol, which are catabolized via leucine metabolism after initial oxidation and activation with CoA. Because fatty acids and alcohols may serve as both feedstocks or final products of metabolic engineering efforts, the fitness data presented here will help guide future genomic modifications towards higher titers, rates, and yields.
IMPORTANCE To engineer novel metabolic pathways into P. putida, a comprehensive understanding of the genetic basis of its versatile metabolism is essential. Here we provide functional evidence for the putative roles of hundreds of genes involved in the fatty acid and alcohol metabolism of this bacterium. These data provide a framework facilitating precise genetic changes to prevent product degradation and channel the flux of specific pathway intermediates as desired.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.