Urinary tract infections can be difficult and expensive to treat. Most (85%) are caused by bacteria called E. coli. Historically, doctors have believed that these urinary tract E. coli came from the patient’s own intestines. But recently, Canadian researchers discovered that not only can these E. coli come from outside the patient’s intestines, they can actually come from outside the patient: from food. After comparing the genetic makeup of E. coli from human urinary tract infections with E. coli from retail meat (chicken, beef, and pork), they concluded that chickens are a likely source of E. coli and that the infections probably come directly from the chickens themselves, not from human contamination during food processing. Therefore, prevention of E. coli urinary tract infections in people might need to start on chicken farms.
Interest in larval source management (LSM) as an adjunct intervention to control and eliminate malaria transmission has recently increased mainly because long-lasting insecticidal nets (LLINs) and indoor residual spray (IRS) are ineffective against exophagic and exophilic mosquitoes. In Amazonian Peru, the identification of the most productive, positive water bodies would increase the impact of targeted mosquito control on aquatic life stages. The present study explores the use of unmanned aerial vehicles (drones) for identifying Nyssorhynchus darlingi (formerly Anopheles darlingi) breeding sites with high-resolution imagery (~0.02m/pixel) and their multispectral profile in Amazonian Peru. Our results show that high-resolution multispectral imagery can discriminate a profile of water bodies where Ny. darlingi is most likely to breed (overall accuracy 86.73%- 96.98%) with a moderate differentiation of spectral bands. This work provides proof-of-concept of the use of high-resolution images to detect malaria vector breeding sites in Amazonian Peru and such innovative methodology could be crucial for LSM malaria integrated interventions.
BackgroundIn Loreto Department, Peru, a successful 2005–2010 malaria control programme (known as PAMAFRO) included massive distribution of long-lasting insecticidal nets (LLINs). Additional local distribution of LLINs occurred in individual villages, but not between 2012 and 2015. A 2011–2012 study of the primary regional malaria vector Anopheles darlingi detected a trend of increased exophagy compared with pre-PAMAFRO behaviour. For the present study, An. darlingi were collected in three villages in Loreto in 2013–2015 to test two hypotheses: (1) that between LLIN distributions, An. darlingi reverted to pre-intervention biting behaviour; and, (2) that there are separate sub-populations of An. darlingi in Loreto with distinct biting behaviour.ResultsIn 2013–2015 An. darlingi were collected by human landing catch during the rainy and dry seasons in the villages of Lupuna and Cahuide. The abundance of An. darlingi varied substantially across years, villages and time periods, and there was a twofold decrease in the ratio of exophagic:endophagic An. darlingi over the study period. Unexpectedly, there was evidence of a rainy season population decline in An. darlingi. Plasmodium-infected An. darlingi were detected indoors and outdoors throughout the night, and the monthly An. darlingi human biting rate was correlated with the number of malaria cases. Using nextRAD genotyping-by-sequencing, 162 exophagic and endophagic An. darlingi collected at different times during the night were genotyped at 1021 loci. Based on model-based and non-model-based analyses, all genotyped An. darlingi belonged to a homogeneous population, with no evidence for genetic differentiation by biting location or time.ConclusionsThis study identified a decreasing proportion of exophagic An. darlingi in two villages in the years between LLIN distributions. As there was no evidence for genetic differentiation between endophagic and exophagic An. darlingi, this shift in biting behaviour may be the result of behavioural plasticity in An. darlingi, which shifted towards increased exophagy due to repellence by insecticides used to impregnate LLINs and subsequently reverted to increased endophagy as the nets aged. This study highlights the need to target vector control interventions to the biting behaviour of local vectors, which, like malaria risk, shows high temporal and spatial heterogeneity.Electronic supplementary materialThe online version of this article (10.1186/s12936-018-2234-4) contains supplementary material, which is available to authorized users.
West Nile virus (WNV; Flaviviridae : Flavivirus ) is a widely distributed arthropod-borne virus that has negatively affected human health and animal populations. WNV infection rates of mosquitoes and human cases have been shown to be correlated with climate. However, previous studies have been conducted at a variety of spatial and temporal scales, and the scale-dependence of these relationships has been understudied. We tested the hypothesis that climate variables are important to understand these relationships at all spatial scales. We analyzed the influence of climate on WNV infection rate of mosquitoes and number of human cases in New York and Connecticut using Random Forests, a machine learning technique. During model development, 66 climate-related variables based on temperature, precipitation and soil moisture were tested for predictive skill. We also included 20–21 non-climatic variables to account for known environmental effects (e.g., land cover and human population), surveillance related information (e.g., relative mosquito abundance), and to assess the potential explanatory power of other relevant factors (e.g., presence of wastewater treatment plants). Random forest models were used to identify the most important climate variables for explaining spatial-temporal variation in mosquito infection rates (abbreviated as MLE ). The results of the cross-validation support our hypothesis that climate variables improve the predictive skill for MLE at county- and trap-scales and for human cases at the county-scale. Of the climate-related variables selected, mean minimum temperature from July–September was selected in all analyses, and soil moisture was selected for the mosquito county-scale analysis. Models demonstrated predictive skill, but still over- and under-estimated WNV MLE and numbers of human cases. Models at fine spatial scales had lower absolute errors but had greater errors relative to the mean infection rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.