Plant morphogenesis depends on polarized exocytic and endocytic membrane trafficking. Members of the Arabidopsis thaliana dynamin-related protein 1 (DRP1) subfamily are required for polarized cell expansion and cytokinesis. Using a combination of live-cell imaging techniques, we show that a functional DRP1C green fluorescent fusion protein (DRP1C-GFP) was localized at the division plane in dividing cells and to the plasma membrane in expanding interphase cells. In both tip growing root hairs and diffuse-polar expanding epidermal cells, DRP1C-GFP organized into dynamic foci at the cell cortex, which colocalized with a clathrin light chain fluorescent fusion protein (CLC-FFP), suggesting that DRP1C may participate in clathrin-mediated membrane dynamics. DRP1C-GFP and CLC-GFP foci dynamics are dependent on cytoskeleton organization, cytoplasmic streaming, and functional clathrin-mediated endocytic traffic. Our studies provide insight into DRP1 and clathrin dynamics in the plant cell cortex and indicate that the clathrin endocytic machinery in plants has both similarities and striking differences to that in mammalian cells and yeast.
SummaryLive-cell microscopy imaging of fluorescent-tagged fusion proteins is an essential tool for cell biologists. Total internal reflection fluorescence microscopy (TIRFM) has joined confocal microscopy as a complementary system for the imaging of cell surface protein dynamics in mammalian and yeast systems because of its high temporal and spatial resolution. Here we present an alternative to TIRFM, termed variable-angle epifluorescence microscopy (VAEM), for the visualization of protein dynamics at or near the plasma membrane of plant epidermal cells and root hairs in whole, intact seedlings that provides high-signal, low-background and near real-time imaging. VAEM uses highly oblique subcritical incident angles to decrease background fluorophore excitation. We discuss the utilities and advantages of VAEM for imaging of fluorescent fusion-tagged marker proteins in studying cortical cytoskeletal and membrane proteins. We believe that the application of VAEM will be an invaluable imaging tool for plant cell biologists.
Members of the Arabidopsis (Arabidopsis thaliana) DYNAMIN-RELATED PROTEIN1 (DRP1) family are required for cytokinesis and cell expansion. Two isoforms, DRP1A and DRP1C, are required for plasma membrane maintenance during stigmatic papillae expansion and pollen development, respectively. It is unknown whether the DRP1s function interchangeably or if they have distinct roles during cell division and expansion. DRP1C was previously shown to form dynamic foci in the cell cortex, which colocalize with part of the clathrin endocytic machinery in plants. DRP1A localizes to the plasma membrane, but its cortical organization and dynamics have not been determined. Using dual color labeling with live cell imaging techniques, we showed that DRP1A also forms discreet dynamic foci in the epidermal cell cortex. Although the foci overlap with those formed by DRP1C and clathrin light chain, there are clear differences in behavior and response to pharmacological inhibitors between DRP1A and DRP1C foci. Possible functional or regulatory differences between DRP1A and DRP1C were supported by the failure of DRP1C to functionally compensate for the absence of DRP1A. Our studies indicated that the DRP1 isoforms function or are regulated differently during cell expansion.
Animal and plant cytokineses appear morphologically distinct. Recent studies, however, have revealed that these cellular processes have many things in common, including the requirement of co-ordinated membrane trafficking and cytoskeletal dynamics. At the intersection of these two processes are the members of the dynamin family of ubiquitous eukaryotic GTPases. In this review, we highlight the conserved contribution of classical dynamin and dynamin-related proteins during cytokinesis in both animal and plant systems. Cytokinesis is the final stage of the cell cycle in which a single cell is physically separated into individual daughter cells. In eukaryotes, this process leads to the division and partitioning of chromatin, organelles, cytoplasmic components and the construction of new membrane between daughter cells. Animal cells divide by constricting plasma membrane and targeting membrane along the newly formed cleavage furrow. The cleavage furrow compacts and bundles the microtubules (MTs) found in the spindle midzone into a structure called the midbody (1). On the other hand, cells of higher plants divide by constructing a unique cytoskeletal apparatus, the phragmoplast, across the division plane and targeting new plasma membrane and cell wall components to the center of the cell creating an intermediate membranous network called the cell plate (2). It has long been thought that the mechanisms of cytokinesis in animals and plants were quite different. Recent work, however, has uncovered highly conserved roles for several membrane trafficking and cytoskeletalassociated proteins in these seemingly different modes of cytokinesis (1). Dynamin and dynamin-related proteins have been shown to play essential roles in cell division in plants (3), animals (4,5) and the protist, Dictyostelium discoideum (6). The phylogenetic relationship of Dictyostelium to plant and animal species (7) likely suggests that there is an ancestral role for dynamin in cytokinesis. In this review, we highlight several studies that suggest that dynamin and dynamin-related proteins (DRPs) have conserved functions in a variety of cell division events.
The SRO7/SOP1 encoded tumor suppressor homologue of Saccharomyces cerevisiae is required for maintenance of ion homeostasis in cells exposed to NaCl stress. Here we show that the NaCl sensitivity of the sro7⌬ mutant is due to defective sorting of Ena1p, the main sodium pump in yeast. On exposure of sro7⌬ mutants to NaCl stress, Ena1p fails to be targeted to the cell surface, but is instead routed to the vacuole for degradation via the multivesicular endosome pathway. SRO7-deficient mutants accumulate post-Golgi vesicles at high salinity, in agreement with a previously described role for Sro7p in late exocytosis. However, Ena1p is not sorted into these post-Golgi vesicles, in contrast to what is observed for the vesicles that accumulate when exocytosis is blocked in sec6-4 mutants at high salinity. These observations imply that Sro7p has a previously unrecognized role for sorting of specific proteins into the exocytic pathway. Screening for multicopy suppressors identified RSN1, encoding a transmembrane protein of unknown function. Overexpression of RSN1 restores NaCl tolerance of sro7⌬ mutants by retargeting Ena1p to the plasma membrane. We propose a model in which blocked exocytic sorting in sro7⌬ mutants, gives rise to quality control-mediated routing of Ena1p to the vacuole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.