Recent epidemics of Zika, dengue, and chikungunya have heightened the need to understand the seasonal and geographic range of transmission by Aedes aegypti and Ae. albopictus mosquitoes. We use mechanistic transmission models to derive predictions for how the probability and magnitude of transmission for Zika, chikungunya, and dengue change with mean temperature, and we show that these predictions are well matched by human case data. Across all three viruses, models and human case data both show that transmission occurs between 18–34°C with maximal transmission occurring in a range from 26–29°C. Controlling for population size and two socioeconomic factors, temperature-dependent transmission based on our mechanistic model is an important predictor of human transmission occurrence and incidence. Risk maps indicate that tropical and subtropical regions are suitable for extended seasonal or year-round transmission, but transmission in temperate areas is limited to at most three months per year even if vectors are present. Such brief transmission windows limit the likelihood of major epidemics following disease introduction in temperate zones.
Mosquito‐borne diseases cause a major burden of disease worldwide. The vital rates of these ectothermic vectors and parasites respond strongly and nonlinearly to temperature and therefore to climate change. Here, we review how trait‐based approaches can synthesise and mechanistically predict the temperature dependence of transmission across vectors, pathogens, and environments. We present 11 pathogens transmitted by 15 different mosquito species – including globally important diseases like malaria, dengue, and Zika – synthesised from previously published studies. Transmission varied strongly and unimodally with temperature, peaking at 23–29ºC and declining to zero below 9–23ºC and above 32–38ºC. Different traits restricted transmission at low versus high temperatures, and temperature effects on transmission varied by both mosquito and parasite species. Temperate pathogens exhibit broader thermal ranges and cooler thermal minima and optima than tropical pathogens. Among tropical pathogens, malaria and Ross River virus had lower thermal optima (25–26ºC) while dengue and Zika viruses had the highest (29ºC) thermal optima. We expect warming to increase transmission below thermal optima but decrease transmission above optima. Key directions for future work include linking mechanistic models to field transmission, combining temperature effects with control measures, incorporating trait variation and temperature variation, and investigating climate adaptation and migration.
Recent epidemics of Zika, dengue, and chikungunya have heightened the need to understand the seasonal and geographic range of transmission by Aedes aegypti and Ae. albopictus mosquitoes. We use mechanistic transmission models to derive predictions for how the probability and magnitude of transmission for Zika, chikungunya, and dengue change with mean temperature, and we show that these predictions are well matched by human case data. Across all three viruses, models and human case data both show that transmission occurs between 18-34°C with maximal transmission occurring in a range from 26-29°C. Controlling for population size and two socioeconomic factors, temperature-dependent transmission based on our mechanistic model is an important predictor of human transmission occurrence and incidence. Risk maps indicate that tropical and subtropical regions are suitable for extended seasonal or year-round transmission, but transmission in temperate areas is limited to at most three months per year even if vectors are present. Such brief transmission windows limit the likelihood of major epidemics following disease introduction in temperate zones.Author SummaryUnderstanding the drivers of recent Zika, dengue, and chikungunya epidemics is a major public health priority. Temperature may play an important role because it affects mosquito transmission, affecting mosquito development, survival, reproduction, and biting rates as well as the rate at which they acquire and transmit viruses. Here, we measure the impact of temperature on transmission by two of the most common mosquito vector species for these viruses, Aedes aegypti and Ae. albopictus. We integrate data from several laboratory experiments into a mathematical model of temperature-dependent transmission, and find that transmission peaks at 26-29°C and can occur between 18-34°C. Statistically comparing model predictions with recent observed human cases of dengue, chikungunya, and Zika across the Americas suggests an important role for temperature, and supports model predictions. Using the model, we predict that most of the tropics and subtropics are suitable for transmission in many or all months of the year, but that temperate areas like most of the United States are only suitable for transmission for a few months during the summer (even if the mosquito vector is present).
BackgroundOver the last 5 years (2013–2017), the Caribbean region has faced an unprecedented crisis of co-occurring epidemics of febrile illness due to arboviruses transmitted by the Aedes sp. mosquito (dengue, chikungunya, and Zika). Since 2013, the Caribbean island of Barbados has experienced 3 dengue outbreaks, 1 chikungunya outbreak, and 1 Zika fever outbreak. Prior studies have demonstrated that climate variability influences arbovirus transmission and vector population dynamics in the region, indicating the potential to develop public health interventions using climate information. The aim of this study is to quantify the nonlinear and delayed effects of climate indicators, such as drought and extreme rainfall, on dengue risk in Barbados from 1999 to 2016.Methods and findingsDistributed lag nonlinear models (DLNMs) coupled with a hierarchal mixed-model framework were used to understand the exposure–lag–response association between dengue relative risk and key climate indicators, including the standardised precipitation index (SPI) and minimum temperature (Tmin). The model parameters were estimated in a Bayesian framework to produce probabilistic predictions of exceeding an island-specific outbreak threshold. The ability of the model to successfully detect outbreaks was assessed and compared to a baseline model, representative of standard dengue surveillance practice. Drought conditions were found to positively influence dengue relative risk at long lead times of up to 5 months, while excess rainfall increased the risk at shorter lead times between 1 and 2 months. The SPI averaged over a 6-month period (SPI-6), designed to monitor drought and extreme rainfall, better explained variations in dengue risk than monthly precipitation data measured in millimetres. Tmin was found to be a better predictor than mean and maximum temperature. Furthermore, including bidimensional exposure–lag–response functions of these indicators—rather than linear effects for individual lags—more appropriately described the climate–disease associations than traditional modelling approaches. In prediction mode, the model was successfully able to distinguish outbreaks from nonoutbreaks for most years, with an overall proportion of correct predictions (hits and correct rejections) of 86% (81%:91%) compared with 64% (58%:71%) for the baseline model. The ability of the model to predict dengue outbreaks in recent years was complicated by the lack of data on the emergence of new arboviruses, including chikungunya and Zika.ConclusionWe present a modelling approach to infer the risk of dengue outbreaks given the cumulative effect of climate variations in the months leading up to an outbreak. By combining the dengue prediction model with climate indicators, which are routinely monitored and forecasted by the Regional Climate Centre (RCC) at the Caribbean Institute for Meteorology and Hydrology (CIMH), probabilistic dengue outlooks could be included in the Caribbean Health-Climatic Bulletin, issued on a quarterly basis to provide climate-smart d...
Background: Malaria continues to be a disease of massive burden in Africa, and the public health resources targeted at surveillance, prevention, control, and intervention comprise large outlays of expense. Malaria transmission is largely constrained by the suitability of the climate for Anopheles mosquitoes and Plasmodium parasite development. Thus, as climate changes, shifts in geographic locations suitable for transmission, and differing lengths of seasons of suitability will occur, which will require changes in the types and amounts of resources. Methods: The shifting geographic risk of malaria transmission was mapped, in context of changing seasonality (i.e. endemic to epidemic, and vice versa), and the number of people affected. A published temperature-dependent model of malaria transmission suitability was applied to continental gridded climate data for multiple future AR5 climate model projections. The resulting outcomes were aligned with programmatic needs to provide summaries at national and regional scales for the African continent. Model outcomes were combined with population projections to estimate the population at risk at three points in the future, 2030, 2050, and 2080, under two scenarios of greenhouse gas emissions (RCP4.5 and RCP8.5). Results: Estimated geographic shifts in endemic and seasonal suitability for malaria transmission were observed across all future scenarios of climate change. The worst-case regional scenario (RCP8.5) of climate change predicted an additional 75.9 million people at risk from endemic (10-12 months) exposure to malaria transmission in Eastern and Southern Africa by the year 2080, with the greatest population at risk in Eastern Africa. Despite a predominance of reduction in season length, a net gain of 51.3 million additional people is predicted be put at some level of risk in Western Africa by midcentury. Conclusions: This study provides an updated view of potential malaria geographic shifts in Africa under climate change for the more recent climate model projections (AR5), and a tool for aligning findings with programmatic needs at key scales for decision-makers. In describing shifting seasonality, it was possible to capture transitions between endemic and epidemic risk areas, to facilitate the planning for interventions aimed at year-round risk versus anticipatory surveillance and rapid response to potential outbreak locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.