Summary
Trait‐based approaches have improved our understanding of plant evolution, community assembly and ecosystem functioning. A major challenge for the upcoming decades is to understand the functions and evolution of early life‐history traits, across levels of organization and ecological strategies. Although a variety of seed traits are critical for dispersal, persistence, germination timing and seedling establishment, only seed mass has been considered systematically. Here we suggest broadening the range of morphological, physiological and biochemical seed traits to add new understanding on plant niches, population dynamics and community assembly. The diversity of seed traits and functions provides an important challenge that will require international collaboration in three areas of research. First, we present a conceptual framework for a seed ecological spectrum that builds upon current understanding of plant niches. We then lay the foundation for a seed‐trait functional network, the establishment of which will underpin and facilitate trait‐based inferences. Finally, we anticipate novel insights and challenges associated with incorporating diverse seed traits into predictive evolutionary ecology, community ecology and applied ecology. If the community invests in standardized seed‐trait collection and the implementation of rigorous databases, major strides can be made at this exciting frontier of functional ecology.
Seed characteristics were measured in 71 Eastern Australian rainforest species representing 30 families. Sensitivity to desiccation to low moisture contents (< 10%) occurred in 42% of species. We estimate, based on findings from 100 species from this present study and previously published reports, that 49% of Eastern Australian rainforest species have non-orthodox seeds. Germination level and time to 50% germination were not significantly different between desiccation sensitive (DS) and desiccation tolerant (DT) seeds. The estimation of seed desiccation sensitivity based on predictors is an important tool underpinning ex situ conservation efforts. Seed characteristics differed significantly between DS and DT seeds; that is, DS seeds had: (i) larger fruits (19 949 mg vs 8322 mg); (ii) larger seeds (1663 mg vs 202 mg); (iii) higher seed moisture contents (49.7% vs 35.5% fresh weight); (iv) lower oil content (7.3% vs 24.8% yield); and (v) less investment in seed coats (0.19 vs 0.48 seed coat ratio). Only 25% of DS seeded species had oily seeds compared with 87% of DT seeded species. Most green embryos were DS. Seed coat ratio was the best predictor of seed DS (80% correctly predicted). Seed moisture content at maturity was also related to germination time. Mean seed size was correlated (-0.657, P = 0.01) with mean seed oil content in 46 species. Further research on seed storage physiology of possible oily and/or DS seeded species is crucial to ensure future long-term security of this biodiversity, particularly for species currently threatened in situ and/or of socioeconomic importance in Eastern Australian rainforests.
The Wollemi pine, Wollemia nobilis (Araucariaceae), was discovered in 1994 as the only extant member of the genus, previously known only from the fossil record. With fewer than 100 trees known from an inaccessible canyon in southeastern Australia, it is one of the most endangered tree species in the world. We conducted a comparative population genetic survey at allozyme, amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) loci in W. nobilis, Araucaria cunninghamii and Agathis robusta - representatives of the two sister genera. No polymorphism was detected at 13 allozyme loci, more than 800 AFLP loci or the 20 SSR loci screened in W. nobilis. In Ag. robusta only one of 12 allozyme loci, five of 800 AFLP loci and none of the 15 SSR loci were variable. For A. cunninghamii, 10 of > 800 AFLP loci and five of 20 SSR loci were variable. Thus low genetic diversity characterizes all three species. While not ruling out the existence of genetic variation, we conclude that genetic diversity is exceptionally low in the Wollemi pine. To our knowledge this is the most extreme case known in plants. We conclude that the combination of small population effects, clonality and below-average genetic variation in the family are probable contributing factors to the low diversity. The exceptionally low genetic diversity of the Wollemi pine, combined with its known susceptibility to exotic fungal pathogens, reinforces current management policies of strict control of access to the pines and secrecy of the pine locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.