The worldwide destructive epidemic of the fungus Mycosphaerella fijiensis on banana started recently, spreading from South-East Asia. The founder effects detected in the global population structure of M. fijiensis reflected rare migration events among continents through movements of infected plant material. The main objective of this work was to infer gene flow and dispersal processes of M. fijiensis at the continental scale from population structure analysis in recently invaded regions. Samples of isolates were collected from banana plantations in 13 countries in Latin America and the Caribbean and in Africa. The isolates were analysed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and microsatellite molecular markers. The results indicate that a high level of genetic diversity was maintained at the plantation and the plant scales. The loci were at gametic equilibrium in most of the samples analysed, supporting the hypothesis of the existence of random-mating populations of M. fijiensis, even at the plant scale. A low level of gene diversity was observed in some populations from the Africa and Latin America-Caribbean regions. Nearly half the populations analysed showed a significant deviation from mutation-drift equilibrium with gene diversity excess. Finally, a high level of genetic differentiation was detected between populations from Africa (FST = 0.19) and from the Latin America-Caribbean region (FST = 0.30). These results show that founder effects accompanied the recent invasion of M. fijiensis in both regions, suggesting stochastic spread of the disease at the continental scale. This spread might be caused by either the limited dispersal of ascospores or by movements of infected plant material.
ABSTRACT:Isolated primary human hepatocytes are a well accepted system for evaluating pharmacological and toxicological effects in humans. However, questions remain regarding how culturing affects the liver-specific functions of the hepatocytes. In addition, cryopreservation could also potentially affect the differentiation state of the hepatocytes. The first aim of the present study was to compare gene expression in freshly isolated primary hepatocytes to that of the liver of origin and to evaluate the expression changes occurring after cryopreservation/thawing, both when maintained in suspension and after plating. The second aim of the present study was to evaluate gene expression in hepatocytes after cold storage of suspensions up to 24 h compared with freshly isolated hepatocytes in suspension. Our results show that the gene expression in freshly isolated human hepatocytes in suspension after isolation is similar to that of the liver of origin. Furthermore, gene expression in primary human hepatocytes in suspension is not affected by hepatocyte cold storage and cryopreservation. However, the gene expression is profoundly affected in monolayer cultures after plating. Specifically, gene expression changes were observed in cultured relative to suspensions of human hepatocytes that are involved in cellular processes such as phase I/II metabolism, basolateral and canalicular transport systems, fatty acid and lipid metabolism, apoptosis, and proteasomal protein recycling. An oxidative stress response may be partially involved in these changes in gene expression. Taken together, these results may aid in the interpretation of data collected from human hepatocyte experiments and suggest additional utility for cold storage and cryopreservation of hepatocytes.The liver serves as the primary site of detoxification of exogenous and endogenous compounds in the systemic circulation. Other biological and physiological functions include the production and secretion of critical blood and bile components, such as albumin, bile salts, and cholesterol. The liver is also involved in protein, steroid, and fat metabolism, as well as vitamin, iron, and sugar storage.One of the most complex functions specific to liver is its ability to metabolize an enormous range of xenobiotics. Many drugs present in the blood are absorbed by hepatocytes, where they can be metabolized via phase I and II biotransformation reactions. Information concerning hepatic drug uptake and metabolism, phase I and phase II induction, drug interactions affecting hepatic metabolism, and hepatotoxicity are essential for the pharmacology and toxicology of a given drug. Because of major species differences both in the catalytic activities and regulation of enzymes involved in drug metabolism, many of these evaluations can only be accurately investigated with human tissue. Because intact cells more closely reflect the environment to which drugs are exposed in the liver, isolated primary human hepatocytes are a well accepted system for evaluating pharmacological and to...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.