ObjectiveTo describe factors associated with mother-to-child HIV transmission (MTCT) in Kenya and identify opportunities to increase testing/care coverage.DesignCross-sectional analysis of national early infant diagnosis (EID) database.Methods365,841 Kenyan infants were tested for HIV from January 2007-July 2015 and results, demographics, and treatment information were entered into a national database. HIV risk factors were assessed using multivariable logistic regression.Results11.1% of infants tested HIV positive in 2007–2010 and 6.9% in 2014–2015. Greater odds of infection were observed in females (OR: 1.08; 95% CI:1.05–1.11), older children (18–24 months vs. 6 weeks-2 months: 4.26; 95% CI:3.87–4.69), infants whose mothers received no PMTCT intervention (vs. HAART OR: 1.92; 95% CI:1.79–2.06), infants receiving no prophylaxis (vs. nevirapine for 6 weeks OR: 2.76; 95% CI:2.51–3.05), and infants mixed breastfed (vs. exclusive breastfeeding OR: 1.39; 95% CI:1.30–1.49). In 2014–2015, 9.1% of infants had mothers who were not on treatment during pregnancy, 9.8% were not on prophylaxis, and 7.0% were mixed breastfed. Infants exposed to all three risky practices had a seven-fold higher odds of HIV infection compared to those exposed to recommended practices. The highest yield of HIV-positive infants were found through targeted testing of symptomatic infants in pediatric/outpatient departments (>15%); still, most infected infants were identified through PMTCT programs.ConclusionDespite impressive gains in Kenya’s PMTCT program, some HIV-infected infants present late and are not benefitting from PMTCT best practices. Efforts to identify these early and enforce evidence-based practice for PMTCT should be scaled up. Infant testing should be expanded in pediatric/outpatient departments, given high yields in these portals.
ObjectiveCurrently 50% of ART eligible patients are not yet receiving life-saving antiretroviral therapy (ART). Financial constraints do not allow most developing countries to adopt a universal test and offer ART strategy. Decentralizing CD4+ T cell testing may, therefore, provide greater access to testing, ART, and better patient management. We evaluated the technical performance of a new point-of-care CD4+ T cell technology, the BD FACSPresto, in a field methods comparison study.Methods264 HIV-positive patients were consecutively enrolled and included in the study. The BD FACSPresto POC CD4+ T cell technology was placed in two rural health care facilities and operated by health care facility staff. We compared paired finger-prick and venous samples using the BD FACSPresto and several existing reference technologies, respectively.ResultsThe BD FACSPresto had a mean bias of 67.29 cells/ul and an r2 of 0.9203 compared to the BD FACSCalibur. At ART eligibility thresholds of 350 and 500 cells/ul, the sensitivity to define treatment eligibility were 81.5% and 77.2% and the specificities were 98.9% and 100%, respectively. Similar results were observed when the BD FACSPresto was compared to the BD FACSCount and Alere Pima. The coefficient of variation (CV) was less than 7% for both the BD FACSCalibur and BD FACSPresto. CD4+ T cell testing by nurses using the BD FACSPresto at rural health care facilities showed high technical similarity to test results generated by laboratory technicians using the BD FACSPresto in a high functioning laboratory.ConclusionsThe BD FACSPresto performed favorably in the laboratory setting compared to the conventional reference standard technologies; however, the lower sensitivities indicated that up to 20% of patients tested in the field in need of treatment would be missed. The BD FACSPresto is a technology that can allow for greater decentralization and wider access to CD4+ T cell testing and ART.
In this study, we have formulated a mathematical model based on a system of ordinary differential equations to study the dynamics of typhoid fever disease incorporating protection against infection. The existence of the steady states of the model are determined and the basic reproduction number is computed using the next generation matrix approach. Stability analysis of the model is carried out to determine the conditions that favour the spread of the disease in a given population. Numerical simulation of the model carried showed that an increase in protection leads to low disease prevalence in a population.
ObjectiveThough absolute CD4+ T cell enumeration is the primary gateway to antiretroviral therapy initiation for HIV-positive patients in all developing countries, patient access to this critical diagnostic test is relatively poor. We technically evaluated the performance of a newly developed point-of-care CD4+ T cell technology, the MyT4, compared with conventional CD4+ T cell testing technologies.DesignOver 250 HIV-positive patients were consecutively enrolled and their blood tested on the MyT4, BD FACSCalibur, and BD FACSCount.ResultsCompared with the BD FACSCount, the MyT4 had an r2 of 0.7269 and a mean bias of −23.37 cells/µl. Compared with the BD FACSCalibur, the MyT4 had an r2 of 0.5825 and a mean bias of −46.58 cells/µl. Kenya currently uses a CD4+ T cell test threshold of 350 cells/µl to determine patient eligibility for antiretroviral therapy. At this threshold, the MyT4 had a sensitivity of 95.3% (95% CI: 88.4–98.7%) and a specificity of 87.9% (95% CI: 82.3–92.3%) compared with the BD FACSCount and sensitivity and specificity of 88.2% (95% CI: 79.4–94.2%) and 84.2% (95% CI: 78.2–89.2%), respectively, compared with the BD FACSCalibur. Finally, the MyT4 had a coefficient of variation of 12.80% compared with 14.03% for the BD FACSCalibur.ConclusionsWe conclude that the MyT4 performed well at the current 350 cells/µl ART initiation eligibility threshold when used by lower cadres of health care facility staff in rural clinics compared to conventional CD4+ T cell technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.