Chromium is a human carcinogen primarily by inhalation exposure in occupational settings. Although lung cancer has been established as a consequence of hexavalent chromium exposure in smokers and nonsmokers, some cancers of other tissues of the gastrointestinal and central nervous systems have also been noted. Except for a few reports from China, little is known about the health risks of environmental exposures to chromium. Likewise, there has been a lack of epidemiological studies of human exposure to hexavalent Cr by drinking water or ingestion, and it has been suggested that humans can perhaps tolerate hexavalent Cr at higher levels than the current drinking water standard of 50 ppb. This review highlights the most recent data on the induction of skin tumors in mice by chronic drinking-water exposure to hexavalent chromium in combination with solar ultraviolet light. This experimental system represents an important new animal model for chromate-induced cancers by ingestion of drinking water, and it suggests by extrapolation that chromate can likely be considered a human carcinogen by ingestion as well. The potential use of this animal model for future risk assessment is discussed.
Chromium, like many transition metal elements, is essential to life at low concentrations yet toxic to many systems at higher concentrations. In addition to the overt symptoms of acute chromium toxicity, delayed manifestations of chromium exposure become apparent by subsequent increases in the incidence of various human cancers. Chromium is widely used in numerous industrial processes, and as a result is a contaminant of many environmental systems. Chromium, in its myriad chemical forms and oxidation states, has been well studied in terms of its general chemistry and its interactions with biological molecules. However, the precise mechanisms by which chromium is both an essential metal and a carcinogen are not yet fully clear. The following review does not seek to embellish upon the proposed mechanisms of the toxic and carcinogenic actions of chromium, but rather provides a comprehensive review of these theories. The chemical nature of chromium compounds and how these properties impact upon the interactions of chromium with cellular and genetic targets, including animal and human hosts, are discussed.
A transgenic gpt+ Chinese hamster cell line (G12) was found to be susceptible to carcinogenic nickel-induced inactivation of gpt expression without mutagenesis or deletion of the transgene. Many nickel-induced 6-thioguanine-resistant variants spontaneously reverted to actively express gpt, as indicated by both reversion assays and direct enzyme measurements. Since reversion was enhanced in many of the nickel-induced variant cell lines following 24-h treatment with the demethylating agent 5-azacytidine, the involvement of DNA methylation in silencing gpt expression was suspected. This was confirmed by demonstrations of increased DNA methylation, as well as by evidence indicating condensed chromatin and heterochromatinization of the gpt integration site in 6-thioguanine-resistant cells. Upon reversion to active gpt expression, DNA methylation and condensation are lost. We propose that DNA condensation and methylation result in heterochromatinization of the gpt sequence with subsequent inheritance of the now silenced gene. This mechanism is supported by direct evidence showing that acute nickel treatment of cultured cells, and of isolated nuclei in vitro, can indeed facilitate gpt sequence-specific chromatin condensation. Epigenetic mechanisms have been implicated in the actions of some nonmutagenic carcinogens, and DNA methylation changes are now known to be important in carcinogenesis. This paper further supports the emerging theory that nickel is a human carcinogen that can alter gene expression by enhanced DNA methylation and compaction, rather than by mutagenic mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.