Scant information is available to date on the intracellular trafficking of the TSH receptor. In the present study we have used stably transfected L cells that express the TSH receptor, 225I-labeled TSH, and antireceptor antibodies as well as gold-conjugated antireceptor monoclonal antibodies and hormone. The latter allowed us to study, by electron microscopy, the cellular distribution and endocytosis of TSH receptor. The receptor was initially localized on the plasmalemma proper and in clathrin-coated pits but was excluded from smooth vesicles open to the cell surface. It was internalized through clathrin-coated vesicles. Constitutive endocytosis represented 10% of cell surface receptor molecules. Endocytosis was increased 3-fold by incubation with hormone. The majority of internalized receptor molecules (90%) was recycled to the cell surface, whereas the hormone was degraded in lysosomes. This recycling of receptor was inhibited by administration of monensin. Electron microscopic and confocal microscopic studies were repeated in primary cultures of human thyroid cells and showed a distribution, and endocytosis pathways, very similar to those observed in transfected L cells. A previous study has shown the LH receptor to be endocytosed in high proportion and to be degraded in lysosomes. Confocal microscopy and colocalization studies with transferrin receptor confirmed that the highly homologous LH and TSH receptors exhibit, when expressed in the same cells, very different cellular trafficking properties. The use of LH/TSH receptor chimeras showed that transmembrane-intracellular domains contain information orienting the protein toward recycling or degradative pathways. The extracellular domain seems to play a role in the extent of intemalization. These observations should now allow the identification of the molecular signals involved.
Using immunocytochemistry, we have observed that the TSH receptor (TSHR) is concentrated at the leading edge of lamellipodia in both cultured human thyroid cells and in various transfected cells. This segregation of the receptor is due to its interaction with extracellular matrix (ECM) and specially with fibronectin. The TSHR, which interacts with the ECM, is known to undergo cleavage by a matrix metalloprotease. The homologous LH receptor, which does not interact with ECM, is not cleaved. The attachment to the ECM modifies the functional properties of the receptor: it increases adenylate cyclase stimulation by hormone, whereas PLC stimulation is not modified. Furthermore, the constitutive activity of the TSHR is only observed in attached cells, suggesting that it is dependent on TSHR interaction with the ECM. Thus, aside from its classical properties of hormone binding and signalization through G proteins, the TSHR is also involved in cell-matrix interactions, which modulate its functional properties.
To study cellular actin dynamics, a cell-free assay based on fluorescence anisotropy was developed. Using G-actin-Alexa as a probe, we found that anisotropy enhancement reflects F-actin elongation. Anisotropy enhancement varies with the concentration of magnesium and calcium cations and with ethylenediaminetetraacetate or well-known effectors of the polymerization. This assay gives the overall status of actin dynamics in cell extracts which are the closest conditions to in vivo, implying most of the regulating proteins that are missing in purified actin measurements. It can be used in a large-scale screening for chemical compounds which modulate actin polymerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.