We investigate the hydrodynamic friction properties of superhydrophobic surfaces and quantify their superlubricating potential. On such surfaces, the contact of the liquid with the solid roughness is minimal, while most of the interface is a liquid-gas one, resulting in strongly reduced friction. We obtain scaling laws for the effective slip length at the surface in terms of the generic surface characteristics ͑roughness length scale, depth, solid fraction of the interface, etc.͒. These predictions are successfully compared to numerical results in various geometries ͑grooves, posts or holes͒. This approach provides a versatile framework for the description of slip on these composite surfaces. Slip lengths up to 100 m are predicted for an optimized patterned surface.
We report a large set of experimental data which demonstrates that a simple yield stress fluid, i.e., which does not present aging or thixotropy, exhibits transient shear banding before reaching a steady state characterized by a homogeneous, linear velocity profile. The duration of the transient regime decreases as a power law with the applied shear rate γ. This power-law behavior, observed here in carbopol dispersions, does not depend on the gap width and on the boundary conditions for a given sample preparation. For γ≲0.1 s(-1), heterogeneous flows could be observed for as long as 10(5) s. These local dynamics account for the ultraslow stress relaxation observed at low shear rates.
In this paper we consider the effect of surface heterogeneity on the slippage of fluid, using two complementary approaches. First, MD simulations of a corrugated hydrophobic surface have been performed. A dewetting transition, leading to a super-hydrophobic state, is observed for pressure below a "capillary" pressure. Conversely, a very large slippage of the fluid on this composite interface is found in this super-hydrophobic state. Second, we propose a macroscopic estimate of the effective slip length on the basis of continuum hydrodynamics, in order to rationalize the previous MD results. This calculation allows to estimate the effect of a heterogeneous slip length pattern at the composite interface. Comparison between the two approaches shows that they are in good agreement at low pressure, but highlights the role of the exact shape of the liquid-vapor interface at higher pressure. These results confirm that small variations in the roughness of a surface can lead to huge differences in the slip effect. On the basis of these results, we propose some guidelines to design highly slippery surfaces, motivated by potential applications in microfluidics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.