The objective of this study was to assess the phenotypic and genetic variability of production traits and milk fatty acid (FA) contents throughout lactation. Genetic parameters for milk, fat, and protein yields, fat and protein contents, and 19 groups and individual FA contents in milk were estimated for first-parity Holstein cows in the Walloon Region of Belgium using single-trait, test-day animal models and random regressions. Data included 130,285 records from 26,166 cows in 531 herds. Heritabilities indicated that de novo synthesized FA were under stronger genetic control than FA originating from the diet and from body fat mobilization. Estimates for saturated short- and medium-chain individual FA ranged from 0.35 for C4:0 to 0.44 for C8:0, whereas those for monounsaturated long-chain individual FA were lower (around 0.18). Moreover, de novo synthesized FA were more heritable in mid to late lactation. Approximate daily genetic correlations among traits were calculated as correlations between daily breeding values for days in milk between 5 and 305. Averaged daily genetic correlations between milk yield and FA contents did not vary strongly among FA (around -0.35) but they varied strongly across days in milk, especially in early lactation. Results indicate that cows selected for high milk yield in early lactation would have lower de novo synthesized FA contents in milk but a slightly higher content of C18:1 cis-9, indicating that such cows might mobilize body fat reserves. Genetic correlations among FA emphasized the combination of FA according to their origin: contents in milk of de novo FA were highly correlated with each other (from 0.64 to 0.99). Results also showed that genetic correlations between C18:1 cis-9 and other FA varied strongly during the first 100 d in milk and reinforced the statement that the release of long-chain FA inhibits FA synthesis in the mammary gland while the cow is in negative energy balance. Finally, results showed that the FA profile in milk changed during the lactation phenotypically and genetically, emphasizing the relationship between the physiological status of cow and milk composition.
Genetic parameters that considered tolerance for heat stress were estimated for production, udder health, and milk composition traits. Data included 202,733 test-day records for milk, fat, and protein yields, fat and protein percentages, somatic cell score (SCS), 10 individual milk fatty acids (FA) predicted by mid-infrared spectrometry, and 7 FA groups. Data were from 34,468 first-lactation Holstein cows in 862 herds in the Walloon region of Belgium and were collected between 2007 and 2010. Test-day records were merged with daily temperature-humidity index (THI) values based on meteorological records from public weather stations. The maximum distance between each farm and its corresponding weather station was 21km. Linear reaction norm models were used to estimate the intercept and slope responses of 23 traits to increasing THI values. Most yield and FA traits had phenotypic and genetic declines as THI increased, whereas SCS, C18:0, C18:1 cis-9, and 4 FA groups (unsaturated FA, monounsaturated FA, polyunsaturated FA, and long-chain FA) increased with THI. Moreover, the latter traits had the largest slope-to-intercept genetic variance ratios, which indicate that they are more affected by heat stress at high THI levels. Estimates of genetic correlations within trait between cold and hot environments were generally high (>0.80). However, lower estimates (<=0.67) were found for SCS, fat yield, and C18:1 cis-9, indicating that animals with the highest genetic merit for those traits in cold environments do not necessarily have the highest genetic merit for the same traits in hot environments. Among all traits, C18:1 cis-9 was the most sensitive to heat stress. As this trait is known to reflect body reserve mobilization, using its variations under hot conditions could be a very affordable milk biomarker of heat stress for dairy cattle expressing the equilibrium between intake and mobilization under warm conditions.
Metabolic disorders are disturbances to one or more of the metabolic processes in dairy cattle. Dysfunction of any of these processes is associated with the manifestation of metabolic diseases or disorders. In this review, data recording, incidences, genetic parameters, predictors, and status of genetic evaluations were examined for (1) ketosis, (2) displaced abomasum, (3) milk fever, and (4) tetany, as these are the most prevalent metabolic diseases where published genetic parameters are available. The reported incidences of clinical cases of metabolic disorders are generally low (less than 10% of cows are recorded as having a metabolic disease per herd per year or parity/lactation). Heritability estimates are also low and are typically less than 5%. Genetic correlations between metabolic traits are mainly positive, indicating that selection to improve one of these diseases is likely to have a positive effect on the others. Furthermore, there may also be opportunities to select for general disease resistance in terms of metabolic stability. Although there is inconsistency in published genetic correlation estimates between milk yield and metabolic traits, selection for milk yield may be expected to lead to a deterioration in metabolic disorders. Under-recording and difficulty in diagnosing subclinical cases are among the reasons why interest is growing in using easily measurable predictors of metabolic diseases, either recorded on-farm by using sensors and milk tests or off-farm using data collected from routine milk recording. Some countries have already initiated genetic evaluations of metabolic disease traits and currently most of these use clinical observations of disease. However, there are opportunities to use clinical diseases in addition to predictor traits and genomic information to strengthen genetic evaluations for metabolic health in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.