Background: Maternal infection during pregnancy is associated with an increased risk of schizophrenia and autism in the offspring. Supporting this correlation, experimentally activating the maternal immune system during pregnancy in rodents produces offspring with abnormal brain and behavioral development. We have developed a nonhuman primate model to bridge the gap between clinical populations and rodent models of maternal immune activation (MIA). Methods: A modified form of the viral mimic, synthetic double-stranded RNA (polyinosinic:polycytidylic acid stabilized with poly-L-lysine) was delivered to two separate groups of pregnant rhesus monkeys to induce MIA: 1) late first trimester MIA (n = 6), and 2) late second trimester MIA (n = 7). Control animals (n = 11) received saline injections at the same first or second trimester time points or were untreated. Sickness behavior, temperature, and cytokine profiles of the pregnant monkeys confirmed a strong inflammatory response to MIA. Results: Behavioral development of the offspring was studied for 24 months. Following weaning at 6 months of age, MIA offspring exhibited abnormal responses to separation from their mothers. As the animals matured, MIA offspring displayed increased repetitive behaviors and decreased affiliative vocalizations. When evaluated with unfamiliar conspecifics, first trimester MIA offspring deviated from species-typical macaque social behavior by inappropriately approaching and remaining in immediate proximity of an unfamiliar animal. Conclusions: In this rhesus monkey model, MIA yields offspring with abnormal repetitive behaviors, communication, and social interactions. These results extended the findings in rodent MIA models to more human-like behaviors resembling those in both autism and schizophrenia.
Phosphorylation has emerged as a crucial regulatory mechanism in the nervous system to integrate the dynamic signaling required for proper synaptic development, function, and plasticity, particularly during changes in neuronal activity. Here we present evidence that Minibrain (Mnb; also known as Dyrk1A), a serine/threonine kinase implicated in autism spectrum disorder and Down syndrome, is required presynaptically for normal synaptic growth and rapid synaptic vesicle endocytosis at the Drosophila neuromuscular junction (NMJ). We find that Mnb-dependent phosphorylation of synaptojanin (Synj) is required, in vivo, for complex endocytic protein interactions and to enhance Synj activity. Neuronal stimulation drives Mnb mobilization to endocytic zones and triggers Mnb-dependent phosphorylation of Synj. Our data identify Mnb as a synaptic kinase that promotes efficient synaptic vesicle recycling by dynamically calibrating Synj function at the Drosophila NMJ, and in turn endocytic capacity, to adapt to conditions of high synaptic activity.
The main objective of this study was to test the hypothesis that in vivo post-translational modifications in proteins, induced by the endogenously generated reactive oxygen and nitrogen molecules, can alter protein function and thereby have an effect on metabolic pathways during the aging process. Succinyl-CoA:3-ketoacid coenzyme A transferase (SCOT), the mitochondrial enzyme involved in the breakdown of ketone bodies in the extrahepatic tissues, was identified in rat heart to undergo age-associated increase in a novel, nitro-hydroxy, addition to tryptophan 372, located in close proximity ( approximately 10 A) of the enzyme active site. Between 4 and 24 months of age, the molar content of nitration was more than doubled while specific enzyme activity increased significantly. The amount of SCOT protein, however, remained unchanged. In vitro treatment of heart mitochondrial soluble proteins with relatively low concentrations of peroxynitrite enhanced the nitration as well as specific activity of SCOT. Results of this study identify tryptophan to be a specific target of nitration in vivo, for the first time. We hypothesize that increases in tryptophan nitration of SCOT and catalytic activity constitute a plausible mechanism for the age-related metabolic shift toward enhanced ketone body consumption as an alternative source of energy supply in the heart.
Hypoxic ischemia (HI) is an acute brain threat across all age groups. Therapeutic hypothermia ameliorates resulting injury in neonates but its side effects prevent routine use in adults. Hypothermia up-regulates a small protein subset that includes RNA-binding motif protein 3 (RBM3), which is neuroprotective under stressful conditions. Here we show how RBM3 stimulates neuronal differentiation and inhibits HI-induced apoptosis in the two areas of persistent adult neurogenesis, the subventricular zone (SVZ) and the subgranular zone (SGZ), while promoting neural stem/progenitor cell (NSPC) proliferation after HI injury only in the SGZ. RBM3 interacts with IGF2 mRNA binding protein 2 (IMP2), elevates its expression and thereby stimulates IGF2 release in SGZ but not SVZ-NSPCs. In summary, we describe niche-dependent regulation of neurogenesis after adult HI injury via the novel RBM3-IMP2-IGF2 signaling pathway.
A key feature of the aging process is that the mitochondrial respiratory capacity declines and production of reactive oxygen species increases in the later part of life span. In previous studies, cytochrome c oxidase (CcO), the terminal component of the mitochondrial electron transport chain, was found to be the only oxidoreductase exhibiting an age-related decrease in activity in Drosophila melanogaster. The present study tested the hypothesis that decreases in the abundance of catalytic subunits of CcO, encoded in mitochondrial DNA, could underlie the age-associated loss of enzyme activity. Protein amounts of subunits I, II and III, which form the catalytic core of CcO, were determined by immunoblot analysis in 15-, 25-, 35-, 47-and 60-day-old flies. Subunits II and III decreased with age by up to 43% and 75%, respectively, whereas the decrease in subunit I was only 15%. The results pinpoint specific changes in a component of the mitochondrial electron transport chain, which could underlie the age-related decrease in mitochondrial respiratory activity and an increase in oxidant production. Apparently, the stoichiometry of CcO holoprotein is dynamically altered during the aging process in Drosophila melanogaster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.