As a part of an ongoing investigation of the use of isoelectric focusing (IEF) in microfluidic devices, pH gradients were electrochemically formed and optically quantified in microfluidic channels using acid-base indicators. The microchannels consisted of two parallel 40-mm-long electrodes with an interelectrode gap of 2.54 mm; top and bottom transparent windows were separated by 0.2 mm. Gradients in pH were formed as a result of the electrochemical decomposition of water at an applied potential not higher than 2.5 V to avoid generation of gas bubbles. Solutions contained low concentrations of a single buffer. The stability of the pH gradients and their sensitivity to changes in initial conditions were investigated under static (nonflow) conditions. Isoelectric focusing of sample biological analytes, bovine hemoglobin and bovine serum albumin, was performed to illustrate the potential of "microfluidic transverse IEF" for use in continuous concentration and separation systems.
A novel method for the concentration of bacterial solutions is presented that implements electrokinetic techniques, zone electrophoresis (ZE) and isoelectric focusing (IEF), in a microfluidic device. The method requires low power (< 3e-5 W) and can be performed continuously on a flowing stream. The device consists of two palladium electrodes held in a flow cell constructed from layers of polymeric film held together by a pressure-sensitive adhesive. Both ZE and IEF are performed with carrier-free solutions in devices in which the electrodes are in intimate contact with the sample fluid. IEF experiments were performed using natural pH gradients; no carrier ampholyte solution was required. Experiments performed in buffer alone resulted in significant electroosmotic flow. Pretreatment of the sample chamber with bleach followed by a concentrated solution of cationic detergent effectively suppressed electroosmotic flow.
The use of microfluidic channels formed by two electrodes made of gold or palladium to perform transverse isoelectric focusing (IEF) is presented as a means for continuous concentration and fractionation of proteins. The microchannels were 40 mm long with an electrode gap of 1.27 mm and a depth of 0.354 mm. The properties of pH gradients formed as a result of the electrolysis of water were influenced by variation of parameters such as the initial pH, ionic strength, and flow rate. Transverse IEF in pressure-driven flow is demonstrated using bovine serum albumin in a single ampholyte buffer as well as in multiple-component buffers. Experimental results of protein focusing compare well to predictions of a mathematical model. Optimal conditions for efficient continuous fractionation of a protein mixture are summarized and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.