Experimental autoimmune encephalomyelitis (EAE) is a commonly used animal model that in several respects mimics human multiple sclerosis (MS), and can be used to design or validate new strategies for treatment of this disease. In the present study, different MRI techniques (macrophage tracking based on labeling cells in vivo by ultrasmall particles of iron oxide (USPIO), blood-brain barrier (BBB) breakdown, and magnetization transfer imaging (MTI)), as well as immunohistological staining were used to study the burden of disease in Lewis rats immunized by guinea pig myelin. The resulting imaging data was compared with behavioral readouts. Animals were studied during the acute phase and the first relapse. Activated monocytes were detected during both episodes in the brain stem or cortex. These areas coincided in part with areas of BBB breakdown. Significant changes of the magnetization transfer ratios (MTRs) of up to 35% were observed in areas of USPIO accumulation. This suggests that infiltrating monocytes are the major source of demyelination in EAE, but monocyte infiltration and breakdown of the BBB are temporally or spatially independent inflammatory processes. Magn Reson Med 50:309 -314, 2003.
FTY720 is an immunomodulator with demonstrated efficacy in a phase II trial of relapsing multiple sclerosis. FTY720-phosphate, the active metabolite generated upon phosphorylation in vivo, acts as a potent agonist on four of the five known sphingosine-1-phosphate (S1P(1)) receptors. AUY954, an aminocarboxylate analog of FTY720, is a low nanomolar, monoselective agonist of the S1P(1) receptor. Due to its selectivity and pharmacokinetic profile, AUY954 is an excellent pharmacological probe of S1P(1)-dependent phenomena. Oral administration of AUY954 induces a profound and reversible reduction of circulating lymphocytes and, in combination with RAD001 (Certican/Everolimus, an mTOR inhibitor), is capable of prolonging the survival of cardiac allografts in a stringent rat transplantation model. This demonstrates that a selective agonist of the S1P(1) receptor is sufficient to achieve efficacy in an animal model of transplantation.
Pulmonary fibrosis can be experimentally induced in small rodents by bleomycin. The antibiotic is usually administered via the intratracheal or intranasal routes. In the present study, we investigated the oropharyngeal aspiration of bleomycin as an alternative route for the induction of lung fibrosis in rats and mice. The development of lung injury was followed in vivo by ultrashort echo time magnetic resonance imaging (UTE-MRI) and by post-mortem analyses (histology of collagen, hydroxyproline determination, and qRT-PCR). In C57BL/6 mice, oropharyngeal aspiration of bleomycin led to more prominent lung fibrosis as compared to intranasal administration. Consequently, the oropharyngeal aspiration route allowed a dose reduction of bleomycin and, therewith, a model refinement. Moreover, the distribution of collagen after oropharyngeal aspiration of bleomycin was more homogenous than after intranasal administration: for the oropharyngeal aspiration route, fibrotic areas appeared all over the lung lobes, while for the intranasal route fibrotic lesions appeared mainly around the largest superior airways. Thus, oropharyngeal aspiration of bleomycin induced morphological changes that were more comparable to the human disease than the intranasal administration route did. Oropharyngeal aspiration of bleomycin led to a homogeneous fibrotic injury also in rat lungs. The present data suggest oropharyngeal aspiration of bleomycin as a less invasive means to induce homogeneous and sustained fibrosis in the lungs of mice and rats.
Purpose:To examine the efficacy of FTY720 as a new agent to reduce inflammatory activity in an animal model of multiple sclerosis (MS) by in vivo macrophage tracking.Material and Methods: FTY720 was used for treatment of rats in a model of chronic relapsing experimental autoimmune encephalomyelitis (EAE) at an oral dose of 0.3 mg/ kg/day. Magnetic resonance imaging (MRI) based on in vivo tracking of macrophages labeled with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, immunohistological staining (IHC), and neurological readouts was used to study the burden of disease in treated and untreated animals.Results: While untreated animals showed severe paralysis of the hind paws, intense accumulation of macrophages in brain tissue, and areas of blood-brain barrier (BBB) disruption, FTY720-treated animals displayed no signs of inflammatory activity or neurological impairment. These observations were made for both acute phase and first relapse.
Conclusion:Tracking of macrophages by MRI provides direct evidence of the immunomodulatory efficacy of FTY720 in the EAE model and correlates well with neurological symptoms and histology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.