Abstract. Spatial interpolation of precipitation data is of great importance for hydrological modelling. Geostatistical methods (kriging) are widely applied in spatial interpolation from point measurement to continuous surfaces. The first step in kriging computation is the semi-variogram modelling which usually used only one variogram model for allmoment data. The objective of this paper was to develop different algorithms of spatial interpolation for daily rainfall on 1 km 2 regular grids in the catchment area and to compare the results of geostatistical and deterministic approaches. This study leaned on 30-yr daily rainfall data of 70 raingages in the hilly landscape of the Ourthe and Ambleve catchments in Belgium (2908 km 2 ). This area lies between 35 and 693 m in elevation and consists of river networks, which are tributaries of the Meuse River. For geostatistical algorithms, seven semi-variogram models (logarithmic, power, exponential, Gaussian, rational quadratic, spherical and penta-spherical) were fitted to daily sample semivariogram on a daily basis. These seven variogram models were also adopted to avoid negative interpolated rainfall. The elevation, extracted from a digital elevation model, was incorporated into multivariate geostatistics. Seven validation raingages and cross validation were used to compare the interpolation performance of these algorithms applied to different densities of raingages. We found that between the seven variogram models used, the Gaussian model was the most frequently best fit. Using seven variogram models can avoid negative daily rainfall in ordinary kriging. The negative estimates of kriging were observed for convective more than stratiform rain. The performance of the different methods varied slightly according to the density of raingages, particCorrespondence to: S. Ly (sarann.ly@doct.ulg.ac.be) ularly between 8 and 70 raingages but it was much different for interpolation using 4 raingages. Spatial interpolation with the geostatistical and Inverse Distance Weighting (IDW) algorithms outperformed considerably the interpolation with the Thiessen polygon, commonly used in various hydrological models. Integrating elevation into Kriging with an External Drift (KED) and Ordinary Cokriging (OCK) did not improve the interpolation accuracy for daily rainfall. Ordinary Kriging (ORK) and IDW were considered to be the best methods, as they provided smallest RMSE value for nearly all cases. Care should be taken in applying UNK and KED when interpolating daily rainfall with very few neighbourhood sample points. These recommendations complement the results reported in the literature. ORK, UNK and KED using only spherical model offered a slightly better result whereas OCK using seven variogram models achieved better result.
Biocodicological analysis of parchments from manuscript books and archives offers unprecedented insight into the materiality of medieval literacy. Using ZooMS for animal species identification, we explored almost the entire library and all the preserved single leaf charters of a single medieval Cistercian monastery (Orval Abbey, Belgium). Systematic non-invasive sampling of parchment collagen was performed on every charter and on the first bifolium from every quire of the 118 codicological units composing the books (1490 samples in total). Within the genuine production of the Orval scriptorium (26 units), a balanced use of calfskin (47.1%) and sheepskin (48.5%) was observed, whereas calfskin was less frequent (24.3%) in externally produced units acquired by the monastery (92 units). Calfskin was preferably used for higher quality manuscripts while sheepskin tends to be the standard choice for ‘ordinary’ manuscript book production. This finding is consistent with thirteenth-century parchment accounts from Beaulieu Abbey (England) where calfskin supply was more limited and its price higher. Our study reveals that the making of archival documents does not follow the same pattern as the production of library books. Although the five earliest preserved charters are made of calfskin, from the 1230s onwards, all charters from Orval are written on sheepskin.
Recently, historical and conservation studies have attached an increasing importance to investigating the materials used in historic documents. In particular, the identification of the animal species from which parchments are made is of high importance and is currently performed by either genetic or proteomic methods. Here, we introduce an innovative, non-invasive optical method for identifying animal species based on light-parchment interaction. The method relies on conservation of light energy through reflection, transmission and absorption from the sample, as well as on statistical processing of the collected optical data. Measurements are performed from ultraviolet (UV) to near-infrared (NIR) spectral ranges by a standard spectrophotometer and data are processed by Principal Component Analysis (PCA). PCA data from modern parchments, made of sheep, calf and goat skins, are used as a database for PCA analysis of historical parchments. Using only the first two principal components (PCs), the method confirmed visual diagnostics about parchment appearance and aging, and was able to recognise the origin species of historical parchment of among database clusters. Furthermore, taking into account the whole set of PCs, species identification was achieved, with all results matching perfectly their proteomic counterparts used for method assessment. The validated method compares favourably with genetic and proteomic methods used for the same purpose. In addition to animals’ proteomic and genetic signatures, a unique “optical fingerprint” of the parchments’ origin species is revealed here. This new method is non-invasive, straightforward to implement, potentially cheap and accessible to scholars and conservators, with minimal training. In the context of cultural heritage, the method could help solving questions related to parchment production and, more generally, medieval writing production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.