Global increases in temperatures and urbanization are impacting the epidemiology of mosquito-borne diseases. Urbanization processes create suitable habitats for vector mosquitoes in which there are a reduced number of predators, and human hosts are widely available. We hypothesize that mosquito vector species, especially Aedes aegypti, are locally concentrated primarily in those specific habitats at the neighborhood levels that provide suitable conditions and environmental resources needed for mosquito survival. Determining how mosquito vector species composition and abundance depend on environmental resources across habitats addresses where different types of vector control need to be applied. Therefore, our goal was to analyze and identify the most productive aquatic habitats for mosquitoes in Miami-Dade County, Florida. Immature mosquito surveys were conducted throughout Miami-Dade County from April 2018 to June 2019, totaling 2,488 inspections. Mosquitoes were collected in 76 different types of aquatic habitats scattered throughout 141 neighborhoods located in the urbanized areas of Miami-Dade County. A total of 44,599 immature mosquitoes were collected and Ae. aegypti was the most common and abundant species, comprising 43% of all specimens collected. Aedes aegypti was primarily found in buckets, bromeliads, and flower pots, concentrated in specific neighborhoods. Our results showed that aquatic habitats created by anthropogenic land-use modifications (e.g., ornamental bromeliads, buckets, etc.) were positively correlated with the abundance of Ae. aegypti. This study serves to identify how vector mosquitoes utilize the resources available in urban environments and to determine the exact role of these specific urban features in supporting populations of vector mosquito species. Ultimately, the identification of modifiable urban features will allow the development of targeted mosquito control strategies optimized to preventatively control vector mosquitoes in urban areas.
Aedes aegypti is the main vector of dengue, Zika, chikungunya, and yellow fever viruses. Controlling populations of vector mosquito species in urban environments is a major challenge and being able to determine what aquatic habitats should be prioritized for controlling Ae. aegypti populations is key to the development of more effective mosquito control strategies. Therefore, our objective was to leverage on the Miami-Dade County, Florida immature mosquito surveillance system based on requested by citizen complaints through 311 calls to determine what are the most important aquatic habitats in the proliferation of Ae. aegypti in Miami. We used a tobit model for Ae. aegypti larvae and pupae count data, type and count of aquatic habitats, and daily rainfall. Our results revealed that storm drains had 45% lower percentage of Ae. aegypti larvae over the total of larvae and pupae adjusted for daily rainfall when compared to tires, followed by bromeliads with 33% and garbage cans with 17%. These results are indicating that storm drains, bromeliads and garbage cans had significantly more pupae in relation to larvae when compared to tires, traditionally know as productive aquatic habitats for Ae. aegypti . Ultimately, the methodology and results from this study can be used by mosquito control agencies to identify habitats that should be prioritized in mosquito management and control actions, as well as to guide and improve policies and increase community awareness and engagement. Moreover, by targeting the most productive aquatic habitats this approach will allow the development of critical emergency outbreak responses by directing the control response efforts to the most productive aquatic habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.