Potato crop is the fourth main food crop in the world and it will certainly feed a big part of the global population in the next years. The economical outlets for this crop are great; however, numerous diseases either soil-or airborne can cause huge losses in the production. Worldwide, about 40 soil-borne diseases affect potato and cause severe damages especially on tubers, the economically most important part of the plant. The occurrence and development of soilborne diseases depend on very diverse factors affecting either the pathogen or the plant. Favorable conditions for potato diseases development are frequently the same as the conditions needed for potato growth: temperature between 10°C and 25°C, high humidity, medium pH, etc. Adapted cultural practices such as a rotation longer than 4 years, appropriate fertilization and water management, an adapted delay between haulm killing and harvest, and dry and cool conditions for tuber storage are good ways to control potato diseases. In most cases, potato pathogens develop specific survival forms, dissemination ways and host penetration methods. The genetic variability of the pathogens implies the use of adapted diagnostic and control methods. Decision support systems developed to predict yield losses allow choosing good control methods such as the use of healthy seeds, adapted pesticides, cultural practices, and biological control agents for each potato disease. The complexity of the interactions between a pathogen and its host, influenced by biotic and abiotic factors of the environment, make the control of the diseases often very difficult. However, deep knowledge of pathosystems allows setting up integrated pest management systems allowing the production of healthy and good quality potatoes.
Epitrix species (Coleoptera: Chrysomelidae) feed mostly on plants from the family Solanaceae and some of them are major pests of potato crops. All Epitrix species are morphologically highly similar, which makes them difficult to identify and limits their study and management. Identification of species is mostly based on the observation of the genitalia and requires a high level of expertise. Here, we propose a tool to reliably identify all developmental stages of the most economically important Epitrix species feeding on potato in Europe and North America (Epitrix cucumeris, Epitrix similaris, Epitrix tuberis, Epitrix subcrinita and Epitrix hirtipennis). We first sequenced two DNA markers (mitochondrial cytochrome c oxidase I (COI) and nuclear internal transcribed spacer 2 (ITS2)) to test their effectiveness in differentiating among six Epitrix species (126 specimens). Morphospecies of Epitrix were well-differentiated by both DNA barcodes and no mitochondrial introgression was detected. Then, we developed an RFLP-based diagnostic method and showed that unambiguous species discrimination can be achieved by using the sole restriction enzyme TaqI on COI polymerase chain reaction products. The tool proposed here should improve our knowledge about Epitrix species biology, distribution and host range, three capacities that are particularly important in the detection and management of these pest species. Specifically, this tool should help prevent the introduction of E. tuberis and E. subcrinita in Europe and limit the spread of the recently introduced E. cucumeris and E. similaris, with minimal disruption to Solanaceae trade.
Skin blemishes of potato (Solanum tuberosum L.) tubers can cause severe economical losses to production. Some blemishes are due to known pathogens and others whose causes are unknown are called atypical blemishes. The present work aims at determining the origin of superficial atypical blemishes on a set of 204 tubers coming from 12 different French regions producing potato. The diversity of fungi and Streptomyces bacteria associated with blemishes was investigated by systematic isolation followed by identification by sequencing the internal transcribed spacer of the ribosomal DNA for fungi and by sequencing the 16S ribosomal DNA for bacteria. We found a high microbial diversity represented by 349 fungal isolates belonging to at least 47 different species and 21 bacterial strains of Streptomyces sp. The most represented fungi belonged to the genera Fusarium, Rhizoctonia, Alternaria, Penicillium, and Clonostachys. The pathogenicity of representative isolates was assessed in three bioassays; two bioassays based on single inoculations in previously sterilized potting mixture, and one bioassay based on both single and double inoculations under hydroponic conditions. We fulfilled the Koch's postulates for Rhizoctonia solani AG 3 producing sclerotia. For other fungal and bacterial strains, our results did not show any causality or relationship between a single isolate or a complex and the occurrence of the blemishes. Moreover, the observation of irregular polygonal sunken corky lesions (polygonal lesions)-the most frequent atypical blemish-on non-inoculated tubers, suggested that the atypical blemishes could as well be a reaction of the plant to stressful environmental conditions.
The soilborne fungus Rhizoctonia solani is a pathogen of many plants and causes severe damage in crops around the world. Strains of R. solani from the anastomosis group (AG) 3 attack potatoes, leading to great yield losses and to the downgrading of production. The study of the genetic diversity of the strains of R. solani in France allows the structure of the populations to be determined and adapted control strategies against this pathogen to be established. The diversity of 73 French strains isolated from tubers grown in the main potato seed production areas and 31 strains isolated in nine other countries was assessed by phylogenetic analyses of (i) the internal transcribed spacer sequences (ITS1 and ITS2) of ribosomal RNA (rRNA), (ii) a part of the gene tef-1α and (iii) the total DNA fingerprints of each strain established by amplified fragment length polymorphism (AFLP). The determination of the AGs of R. solani based on the sequencing of the ITS region showed three different AGs among our collection (60 AG 3 PT, 8 AG 2-1 and 5 AG 5). Grouping of the strains belonging to the same AG was confirmed by sequencing of the gene tef-1α used for the first time to study the genetic diversity of R. solani. About 42% of ITS sequences and 72% of tef-1α sequences contained polymorphic sites, suggesting that the cells of R. solani strains contain several copies of ITS and the tef-1α gene within the same nucleus or between different nuclei. Phylogenetic trees showed a greater genetic diversity within AGs in tef-1α sequences than in ITS sequences. The AFLP analyses showed an even greater diversity among the strains demonstrating that the French strains of R. solani isolated from potatoes were not a clonal population. Moreover there was no relationship between the geographical origins of the strains or the variety from which they were isolated and their genetic diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.