Many current curricula, in going beyond traditional goals, increasingly foster creativity in science classrooms, declaring creativity a core skill of the 21st century. For enhancing creativity in science classrooms, the subject Arts is considered to offer a potential way from STEM (Science, Technology, Engineering, Mathematics) to STEAM (STEM with Arts)). The Horizont-2020 project Creations prepared more than 100 creativity-enhancing STEAM modules based on the 5E instructional model. STEM subjects were mathematics, biology, physics, chemistry or technology, and often interdisciplinary for different school and class levels between the ages of nine and nineteen. All modules provided a social environment fostering creativity where students imagine, explore, experiment, test, manipulate, and speculate. Exemplarily, five modules including physics, math, and biology, were selected, for monitoring motivation and creativity. The first was measured on the level of career-motivation and self-efficacy, the latter focused on two sub-constructs: active cognition such as idea processing (Act), and a mental state of creative immersion (Flow). Subjects were a sample of 995 students (9–18 years). In summary, no gender impact or age effect appeared in any of the monitored variables. Participation intervened with Self-Efficacy and Act, while Career Motivation or Flow did not. Act as a cognitive variable associated with creativity might be more sensitive to changes, whereas Flow as a parameter measuring a state of mind related to emotion appears more stable. Path analysis supported the role of creativity for Career-Motivation by promoting Self-Efficacy. Conclusions for appropriate educational settings to foster STEAM environments are discussed.
Creativity is a broad and complex construct, difficult to define and to quantify, assumed to introduce new impulses into science education (STEM), and leading to better acceptance of science by adolescents. Therefore, increasing efforts are being undertaken to integrate traditional creativity (Arts), in modifying STEM to STEAM. Consequently, a valid way of empirically quantifying of creativity of adolescents is needed. In this study, part of a European initiative (CREATIONS), an 8item Likert-scale questionnaire quantifying individual creativity was administered to a sample of 2,713 students, aged 11-19 (M ± SD = 15.71 ± 2.24; 54.7% females), revealing two subscales: one, labelled Act, covering conscious and trainable cognitive processes; the second, named Flow, contained items describing elements of flow experiences, a mental state of creativity. Analyses indicated that there were no gender differences and that younger students' creativity scores were higher than those of older students. Recommendations for implementation in STEAM lessons are discussed. Creativity is a broad and complex construct, difficult to define and to quantify. Unlike other complex variables such as personality or attitudes, research into creativity quantifying is still disputed. Although personality has been measured since the 1940s (
A promising way to bring STEAM (STEM enriched with Arts) into classrooms is the Professional Development (PD) path. Its main difference to a usual PD lies in the introduction of creativity with its social skills rather than just on cognitive learning, and thus in STEAM teaching, teachers need training in new ways of teaching. In order to establish STEAM in everyday school life, an effective PD is required to go beyond one-time interventions, which seldom work sustainably. After our course schedule, the participating teachers were supposed to apply their expertise in their next school year’s classroom. The provided material ensured the teachers to work regularly with STEAM, and as the involved teachers were supposed to recapitulate and consolidate their STEAM skills in their classroom work. Following the PD goals, the students (N = 550) of the participating teachers were monitored for scientific motivation and creativity in order to examine the PD effects. For the analysis, we calculated canonical correlations to confirm the association between creativity and motivation. The structural equation model (SEM) confirmed the model that with STEAM creativity has a positive effect on motivation: A long-term PD that is integrated into school life is an appropriate socio-cultural sustainability entry to promote creativity in classrooms. Through creativity, apparently, students’ self-efficacy increase. In conclusion, integrating creativity into education via PD works and may provide a promising channel to multiplication into further science classrooms, which is discussed in the conclusions.
Computers are considered innovative in classrooms, raising expectations of increased cognitive learning outcomes or motivation with effects on Deeper Learning (DL). The "new medium", however, may cause cognitive overloads. Combined with gender-related variations in ability, self-efficacy or self-confidence, computers may even diminish learning effects. Our empirical study used a quasi-experimental design and the Intrinsic Motivation Inventory (IMI) to monitor efficacy in knowledge gain and motivation when using computer-aided versus textbook-based educational units. Our sample consisted of 393 eighth graders. One objective focused on gender effects associated with autonomous teacher-assisted learning via interactive software or an appropriate textbook. Both groups finished with a recapitulation with the teacher. A third group concluded a computer-aided lesson with a computer quiz. To provide evidence for DL we tested long-term memory after six weeks and examined its correlation with intrinsic motivation factors. In general, our intervention affected the girls' but not the boys' intrinsic motivation. We recorded significantly higher post-test scores in the textbook-based lesson, but the differences vanished in the retention test. The teacher-assisted consolidation phase increased long-term knowledge and positively intervened with the students' interest. Thus, we found evidence for DL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.