Cassava mosaic disease (CMD), which is caused by single-stranded DNA begomoviruses, severely limits cassava production across Africa. A previous study showed that CMD symptom severity and viral DNA accumulation increase in cassava in the presence of a DNA sequence designated as SEGS-2 ( s equence e nhancing g eminivirus s ymptoms). We report here that when SEGS-2 is co-inoculated with African cassava mosaic virus (ACMV) onto Arabidopsis thaliana , viral symptoms increase. Transgenic Arabidopsis with an integrated copy of SEGS-2 inoculated with ACMV also display increased symptom severity and viral DNA levels. Moreover, SEGS-2 enables Cabbage leaf curl virus (CaLCuV) to infect a geminivirus resistant Arabidopsis thaliana accession. Although SEGS-2 is related to cassava genomic sequences, an earlier study showed that it occurs as episomes and is packaged into virions in CMD-infected cassava and viruliferous whiteflies. We identified SEGS-2 episomes in SEGS-2 transgenic Arabidopsis. The episomes occur as both double-stranded and single-stranded DNA, with the single-stranded form packaged into virions. In addition, SEGS-2 episomes replicate in tobacco protoplasts in the presence, but not the absence, of ACMV DNA-A. SEGS-2 episomes contain a SEGS-2 derived promoter and an open reading frame with the potential to encode a 75-amino acid protein. An ATG mutation at the beginning of the SEGS-2 coding region does not enhance ACMV infection in A. thaliana . Together, the results established that SEGS-2 is a new type of begomovirus satellite that enhances viral disease through the action of a SEGS-2 encoded protein that may also be encoded in the cassava genome. IMPORTANCE Cassava is an important root crop in the developing world and a food and income crop for more than 300 million African farmers. Cassava is rising in global importance and trade as the demands for biofuels and commercial starch increase. More than half of the world’s cassava is produced in Africa, where it is primarily grown by smallholder farmers, many of whom are from the poorest villages. Although cassava can grow under high temperature, drought and poor soil conditions, its production is severely limited by viral diseases. Cassava mosaic disease (CMD) is one of the most important viral diseases of cassava and can cause up to 100% yield losses. We provide evidence that SEGS-2, which was originally isolated from cassava crops displaying severe and atypical CMD symptoms in Tanzanian fields, is a novel begomovirus satellite that can compromise the development of durable CMD resistance.
Cassava mosaic disease (CMD) represents a serious threat to cassava, a major root crop for more than 300 million Africans. CMD is caused by single-stranded DNA begomoviruses that evolve rapidly, making it challenging to develop durable disease resistance. In addition to the evolutionary forces of mutation, recombination and reassortment, factors such as climate, agriculture practices and the presence of DNA satellites may impact viral diversity. To gain insight into the factors that alter and shape viral diversity in planta, we used high-throughput sequencing to characterize the accumulation of nucleotide diversity after inoculation of infectious clones corresponding to African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in the susceptible cassava landrace Kibandameno. We found that vegetative propagation had a significant effect on viral nucleotide diversity, while temperature and a satellite DNA did not have measurable impacts in our study. EACMCV diversity increased linearly with the number of vegetative propagation passages, while ACMV diversity increased for a time and then decreased in later passages. We observed a substitution bias toward C→T and G→A for mutations in the viral genomes consistent with field isolates. Non-coding regions excluding the promoter regions of genes showed the highest levels of nucleotide diversity for each genome component. Changes in the 5′ intergenic region of DNA-A resembled the sequence of the cognate DNA-B sequence. The majority of nucleotide changes in coding regions were non-synonymous, most with predicted deleterious effects on protein structure, indicative of relaxed selection pressure over six vegetative passages. Overall, these results underscore the importance of knowing how cropping practices affect viral evolution and disease progression.
We present an optimized protocol for enhanced amplification and enrichment of viral DNA for Next Generation Sequencing of begomovirus genomes. The rapid ability of these viruses to evolve threatens many crops and underscores the importance of using next generation sequencing efficiently to detect and understand the diversity of these viruses. We combined enhanced rolling circle amplification (RCA) with EquiPhi29 polymerase and size selection to generate a cost-effective, short-read sequencing method. This optimized protocol produced short-read sequencing with at least 50% of the reads mapping to the viral reference genome. We provide other insights into common misconceptions about RCA and lessons we have learned from sequencing single-stranded DNA viruses. Our protocol can be used to examine viral DNA as it moves through the entire pathosystem from host to vector, providing valuable information for viral DNA population studies, and would likely work well with other CRESS DNA viruses.
We deeply sequenced two pairs of widely used infectious clones (4 plasmids) of the bipartite begomoviruses African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV). The ACMV clones were quite divergent from published sequences. Raw reads, consensus plasmid sequences, and the infectious clones themselves are all publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.