Cerebrospinal meningitis is a feared disease that can cause the death of a previously healthy individual within hours. Paradoxically, the causative agent, Neisseria meningitidis, is a common inhabitant of the human nasopharynx, and as such, may be considered a normal, commensal organism. Only in a small proportion of colonized people do the bacteria invade the bloodstream, from where they can cross the blood–brain barrier to cause meningitis. Furthermore, most meningococcal disease is caused by bacteria belonging to only a few of the phylogenetic groups among the large number that constitute the population structure of this genetically variable organism. However, the genetic basis for the differences in pathogenic potential remains elusive. By performing whole genome comparisons of a large collection of meningococcal isolates of defined pathogenic potential we brought to light a meningococcal prophage present in disease-causing bacteria. The phage, of the filamentous family, excises from the chromosome and is secreted from the bacteria via the type IV pilin secretin. Therefore, this element, by spreading among the population, may promote the development of new epidemic clones of N. meningitidis that are capable of breaking the normal commensal relationship with humans and causing invasive disease.
Conserved regions about 420 bp long of the pelADE cluster specific to Erwinia chrysanthemi were amplified by PCR and used to differentiate 78 strains of E. chrysanthemi that were obtained from different hosts and geographical areas. No PCR products were obtained from DNA samples extracted from other pectinolytic and nonpectinolytic species and genera. The pel fragments amplified from the E. chrysanthemi strains studied were compared by performing a restriction fragment length polymorphism (RFLP) analysis. On the basis of similarity coefficients derived from the RFLP analysis, the strains were separated into 16 PCR RFLP patterns grouped in six clusters. These clusters appeared to be correlated with other infraspecific levels of E. chrysanthemi classification, such as pathovar and biovar, and occasionally with geographical origin. Moreover, the clusters correlated well with the polymorphism of pectate lyase and pectin methylesterase isoenzymes. While the pectin methylesterase profiles correlated with host monocot-dicot classification, the pectate lyase polymorphism might reflect the cell wall microdomains of the plants belonging to these classes.
16S and 23S rRNAs from Escherichia coli were used to study the relationship among a representative collection of strains of Erwinia chrysanthemi differing in their original host and geographical origin. Phenetic analysis of restriction fragment length polymorphisms allowed the distribution of the studied strains into seven clusters. These clusters were similar to those obtained by cladistic methods and appeared to correlate well with the established pathovars and biovars but to a lesser extent with geographical distribution. Except for two groups of strains defined as tropical and temperate isolates (clusters 3 and 4, respectively), our clustering correlated well with botanical classifications of host plants. However, the rRNA groupings were shown to be more discriminative than biovar analysis. To assess the relationship between rRNA clusters and pathogenicity, 12 representative strains from different clusters were tested for pathogenicity on different plants. The two typical symptoms, maceration and wilting, were observed for these strains. The occurrence of the tobacco
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.