BackgroundThe number of cases of gonorrhoea in the USA and worldwide caused by Neisseria gonorrhoeae is increasing (555 608 reported US cases in 2017, and 87 million cases worldwide in 2016). Many countries report declining in vitro susceptibility of azithromycin, which is a concern because azithromycin and ceftriaxone are the recommended dual treatment in many countries. We aimed to identify strain types associated with decreased susceptibility to azithromycin. MethodsWe did a genomic analysis of N gonorrhoeae isolates obtained by the US Gonococcal Isolate Surveillance Project. Isolates were whole-genome sequenced based on decreased susceptibility to azithromycin (minimal inhibitory concentration [MIC] ≥2 µg/mL, using agar dilution antibiotic susceptibility testing) and geographical representation. Bioinformatic analyses established genomic diversity, strain population dynamics, and antimicrobial resistance profiles. Findings 410 isolates were sorted into more than 20 unique phylogenetic clades. One predominant persistent clade (consisting of 97 isolates) included the most isolates with azithromycin MICs of 2 µg/mL or higher (61 of 97 [63%] vs 59 of 311 [19%]; p<0•0001) and carried a mosaic mtr (multiple transferable resistance) locus (68 of 97 [70%] vs two of 313 [1%]; p<0•0001). Of the remaining 313 isolates, 57 (18%) had decreased susceptibility to azithromycin (MIC ≥4 µg/mL), which was attributed to 23S rRNA variants (56 of 57 [98%]) and formed phylogenetically diverse clades, showing various levels of clonal expansion. Interpretation Reduced azithromycin susceptibility was associated with expanding and persistent clades harbouring two well described resistance mechanisms, mosaic mtr locus and 23S rRNA variants. Understanding the role of recombination, particularly within the mtr locus, on the fitness and expansion of strains with decreased susceptibility has important implications for the public health response to minimise gonorrhoea transmission. Funding US Centers for Disease Control and Prevention (CDC), CDC Combating Antibiotic Resistant Bacteria initiative,
Mouse models of human disease are an important tool for studying disease mechanism and manifestation in a way that is physiologically relevant. Spinal muscular atrophy (SMA) is a neurodegenerative disease that is caused by deletion or mutation of the survival motor neuron gene (SMN1). The SMA disease is present in a spectrum of disease severities ranging from infant mortality, in the most severe cases, to minor motor impairment, in the mildest cases. The variability of disease severity inversely correlates with the copy number, and thus expression of a second, partially functional survival motor neuron gene, SMN2. Correspondingly, a plethora of mouse models has been developed to mimic these different types of SMA. These models express a range of SMN protein levels and extensively cover the severe and mild types of SMA, with neurological and physiological manifestation of disease supporting the relevance of these models. The SMA models provide a strong background for studying SMA and have already shown to be useful in pre-clinical therapeutic studies. The purpose of this review is to succinctly summarize the genetic and disease characteristic of the SMA mouse models and to highlight their use for therapeutic testing.
Cardiovascular adaptations to microgravity undermine the physiological capacity to respond to orthostatic challenges upon return to terrestrial gravity. The purpose of the present study was to investigate the influence of spaceflight on vasoconstrictor and myogenic contractile properties of mouse gastrocnemius muscle resistance arteries. We hypothesized that vasoconstrictor responses acting through adrenergic receptors [norepinephrine (NE)], voltage-gated Ca(2+) channels (KCl), and stretch-activated (myogenic) mechanisms would be diminished following spaceflight. Feed arteries were isolated from gastrocnemius muscles, cannulated on glass micropipettes, and physiologically pressurized for in vitro experimentation. Vasoconstrictor responses to intraluminal pressure changes (0-140 cmH(2)O), KCl (10-100 mM), and NE (10(-9)-10(-4) M) were measured in spaceflown (SF; n = 11) and ground control (GC; n = 11) female C57BL/6 mice. Spaceflight reduced vasoconstrictor responses to KCl and NE; myogenic vasoconstriction was unaffected. The diminished vasoconstrictor responses were associated with lower ryanodine receptor-2 (RyR-2) and ryanodine receptor-3 (RyR-3) mRNA expression, with no difference in sarcoplasmic/endoplasmic Ca(2+) ATPase 2 mRNA expression. Vessel wall thickness and maximal intraluminal diameter were unaffected by spaceflight. The data indicate a deficit in intracellular calcium release via RyR-2 and RyR-3 in smooth muscle cells as the mechanism of reduced contractile activity in skeletal muscle after spaceflight. Furthermore, the results suggest that impaired end-organ vasoconstrictor responsiveness of skeletal muscle resistance arteries contributes to lower peripheral vascular resistance and less tolerance of orthostatic stress in humans after spaceflight.
Spinal muscular atrophy (SMA) is a progressive neurodegenerative disease associated with low levels of the essential survival motor neuron (SMN) protein. Reduced levels of SMN is due to the loss of the SMN1 gene and inefficient splicing of the SMN2 gene caused by a C>T mutation in exon 7. Global analysis of the severe SMNΔ7 SMA mouse model revealed altered splicing and increased levels of the hypoxia-inducible transcript, Hif3alpha, at late stages of disease progression. Severe SMA patients also develop respiratory deficiency during disease progression. We sought to evaluate whether hypoxia was capable of altering SMN2 exon 7 splicing and whether increased oxygenation could modulate disease in a severe SMA mouse model. Hypoxia treatment in cell culture increased SMN2 exon 7 skipping and reduced SMN protein levels. Concordantly, the treatment of SMNΔ7 mice with hyperoxia treatment increased the inclusion of SMN2 exon 7 in skeletal muscles and resulted in improved motor function. Transfection splicing assays of SMN minigenes under hypoxia revealed that hypoxia-induced skipping is dependent on poor exon definition due to the SMN2 C>T mutation and suboptimal 5' splice site. Hypoxia treatment in cell culture led to increased hnRNP A1 and Sam68 levels. Mutation of hnRNP A1-binding sites prevented hypoxia-induced skipping of SMN exon 7 and was found to bind both hnRNP A1 and Sam68. These results implicate hypoxic stress as a modulator of SMN2 exon 7 splicing in disease progression and a coordinated regulation by hnRNP A1 and Sam68 as modifiers of hypoxia-induced skipping of SMN exon 7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.