Neisseria meningitidis binds factor H (fH), a key regulator of the alternative complement pathway. A ∼29 kD fH-binding protein expressed in the meningococcal outer membrane was identified by mass spectrometry as GNA1870, a lipoprotein currently under evaluation as a broad-spectrum meningococcal vaccine candidate. GNA1870 was confirmed as the fH ligand on intact bacteria by 1) abrogation of fH binding upon deleting GNA1870, and 2) blocking fH binding by anti-GNA1870 mAbs. fH bound to whole bacteria and purified rGNA1870 representing each of the three variant GNA1870 families. We showed that the amount of fH binding correlated with the level of bacterial GNA1870 expression. High levels of variant 1 GNA1870 expression (either by allelic replacement of gna1870 or by plasmid-driven high-level expression) in strains that otherwise were low-level GNA1870 expressers (and bound low amounts of fH by flow cytometry) restored high levels of fH binding. Diminished fH binding to the GNA1870 deletion mutants was accompanied by enhanced C3 binding and increased killing of the mutants. Conversely, high levels of GNA1870 expression and fH binding enhanced serum resistance. Our findings support the hypothesis that inhibiting the binding of a complement down-regulator protein to the neisserial surface by specific Ab may enhance intrinsic bactericidal activity of the Ab, resulting in two distinct mechanisms of Ab-mediated vaccine efficacy. These data provide further support for inclusion of this molecule in a meningococcal vaccine. To reflect the critical function of this molecule, we suggest calling it fH-binding protein.
Peptidoglycan was prepared from purified Bacillus subtilis spores of wild-type and several mutant strains. Digestion with muramidase resulted in cleavage of the glycosidic bonds adjacent to muramic acid replaced by peptide or alanine side chains but not the bonds adjacent to muramic lactam. Reduction of the resulting muropeptides allowed their separation by reversed-phase high-pressure liquid chromatography. The structures of 20 muropeptides were determined by amino acid and amino sugar analysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In wild-type spores, 50% of the muramic acid had been converted to the lactam and 75% of these lactam residues were spaced regularly at every second muramic acid position in the glycan chains. Single L-alanine side chains were found on 25% of the muramic acid residues. The remaining 25% of the muramic acid had tetrapeptide or tripeptide side chains, and 11% of the diaminopimelic acid in these side chains was involved in peptide cross-links. Analysis of spore peptidoglycan produced by a number of mutants lacking proteins involved in cell wall metabolism revealed structural changes. The most significant changes were in the spores of a dacB mutant which lacks the sporulation-specific penicillinbinding protein 5*. In these spores, only 46% of the muramic acid was in the lactam form, 12% had L-alanine side chains, and 42% had peptide side chains containing diaminopimelic acid, 29% of which was involved in cross-links.Bacterial endospores produced by gram-positive species (including Bacillus and Clostridium species) are metabolically dormant resting-stage cells resistant to a variety of physical and chemical treatments which are rapidly lethal to vegetative cells. These resistance properties derive from a variety of modifications in the cell structure and contents. The major determinant of spore heat resistance has been found to be the relative degree of dehydration of the spore protoplast (1,14,17,18). The relative dehydration of the protoplast is maintained by a surrounding peptidoglycan structure. This structure is composed of a thin inner layer called the germ cell wall and a thicker outer layer termed the cortex. The germ cell wall has a structure similar to that of the vegetative wall peptidoglycan (27) and serves as the precursor of the vegetative wall upon spore germination. The cortex peptidoglycan has a significantly different structure (30, 32) (Fig. 1), with the most dramatic changes being the absence of side chains from approximately 50% of the muramic acid residues which are converted to muramic lactam and the presence of single L-Ala side chains on a large fraction of the muramic acid residues.Degradation of the cortex peptidoglycan, during spore germination or by artificial means, results in rapid rehydration of the protoplast and a concomitant loss of spore heat resistance and dormancy. Several theories suggest that the cortex peptidoglycan also has a mechanical activity that is involved in the attainment of spore protoplast dehy...
The spike protein (S) of SARS-CoV-2 mediates entry into human cells by interacting with human angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Here, we report identification of CD209L/L-SIGN and a related protein, CD209/DSIGN as alternative receptors capable of mediating SARS-CoV-2 entry into human cells. Immunofluorescence staining of human tissues revealed a prominent expression of CD209L in the lung and kidney epithelial and endothelial cells of small and medium-sized vessels, whereas CD209 was detected only in a limited number of cell types. Biochemical assays revealed that ectopically expressed CD209L and CD209 bind to S-RBD and mediate SARS-CoV-2 Spseudotyped virus entry. Furthermore, we demonstrate that human endothelial cells endogenously express CD209L and are permissive to SARS-CoV-2 infection. Soluble CD209L-Fc neutralized virus entry.Our observations show that CD209L and CD209 serve as alternative receptors for SARS-CoV-2 in diseaserelevant cell types, including the vascular system. This may have implications for antiviral drug development.
As the COVID-19 pandemic continues to spread, investigating the processes underlying the interactions between SARS-CoV-2 and its hosts is of high importance. Here, we report the identification of CD209L/L-SIGN and the related protein CD209/DC-SIGN as receptors capable of mediating SARS-CoV-2 entry into human cells. Immunofluorescence staining of human tissues revealed prominent expression of CD209L in the lung and kidney epithelia and endothelia. Multiple biochemical assays using a purified recombinant SARS-CoV-2 spike receptor-binding domain (S-RBD) or S1 encompassing both N termal domain and RBD and ectopically expressed CD209L and CD209 revealed that CD209L and CD209 interact with S-RBD. CD209L contains two N -glycosylation sequons, at sites N92 and N361, but we determined that only site N92 is occupied. Removal of the N -glycosylation at this site enhances the binding of S-RBD with CD209L. CD209L also interacts with ACE2, suggesting a role for heterodimerization of CD209L and ACE2 in SARS-CoV-2 entry and infection in cell types where both are present. Furthermore, we demonstrate that human endothelial cells are permissive to SARS-CoV-2 infection, and interference with CD209L activity by a knockdown strategy or with soluble CD209L inhibits virus entry. Our observations demonstrate that CD209L and CD209 serve as alternative receptors for SARS-CoV-2 in disease-relevant cell types, including the vascular system. This property is particularly important in tissues where ACE2 has low expression or is absent and may have implications for antiviral drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.