Correlation-based functional MRI connectivity methods typically impose a temporal sample independence assumption on the data. However, the conventional use of temporal filtering to address the high noise content of fMRI data may introduce sample dependence. Violation of the independence assumption has ramifications for the distribution of sample correlation which, if unaccounted for, may invalidate connectivity results. To enable the use of temporal filtering for noise suppression while maintaining the integrity of connectivity results, we derive the distribution of sample correlation between filtered timeseries as a function of the filter frequency response. Corrected distributions are also derived for statistical inference tests of sample correlation between filtered timeseries, including Fisher's z-transformation and the Student's t-test. Crucially, the proposed corrections are valid for any unknown true correlation and arbitrary filter specifications. Empirical simulations demonstrate the potential for temporal filtering to artificially induce connectivity by introducing sample dependence, and verify the utility of the proposed corrections in mitigating this effect. The importance of our corrections is exemplified in a resting state fMRI connectivity analysis: seed-voxel correlation maps generated from filtered data using uncorrected test variates yield an unfeasible number of connections to the left primary motor cortex, suggesting artificially induced connectivity, while maps acquired from filtered data using corrected test variates exhibit bilateral connectivity in the primary motor cortex, in conformance with expected results as seen in the literature.
The hippocampal place cell system in rodents has provided a major paradigm for the scientific investigation of memory function and dysfunction. Place cells have been observed in area CA1 of the hippocampus of both freely moving animals, and of head-fixed animals navigating in virtual reality environments. However, spatial coding in virtual reality preparations has been observed to be impaired. Here we show that the use of a real-world environment system for head-fixed mice, consisting of an air-floating track with proximal cues, provides some advantages over virtual reality systems for the study of spatial memory. We imaged the hippocampus of head-fixed mice injected with the genetically encoded calcium indicator GCaMP6s while they navigated circularly constrained or open environments on the floating platform. We observed consistent place tuning in a substantial fraction of cells despite the absence of distal visual cues. Place fields remapped when animals entered a different environment. When animals re-entered the same environment, place fields typically remapped over a time period of multiple days, faster than in freely moving preparations, but comparable with virtual reality. Spatial information rates were within the range observed in freely moving mice. Manifold analysis indicated that spatial information could be extracted from a low-dimensional subspace of the neural population dynamics. This is the first demonstration of place cells in head-fixed mice navigating on an air-lifted real-world platform, validating its use for the study of brain circuits involved in memory and affected by neurodegenerative disorders.
Table of contentsA1 Functional advantages of cell-type heterogeneity in neural circuitsTatyana O. SharpeeA2 Mesoscopic modeling of propagating waves in visual cortexAlain DestexheA3 Dynamics and biomarkers of mental disordersMitsuo KawatoF1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneuronsVladislav Sekulić, Frances K. SkinnerF2 Kernel methods in reconstruction of current sources from extracellular potentials for single cells and the whole brainsDaniel K. Wójcik, Chaitanya Chintaluri, Dorottya Cserpán, Zoltán SomogyváriF3 The synchronized periods depend on intracellular transcriptional repression mechanisms in circadian clocks.Jae Kyoung Kim, Zachary P. Kilpatrick, Matthew R. Bennett, Kresimir JosićO1 Assessing irregularity and coordination of spiking-bursting rhythms in central pattern generatorsIrene Elices, David Arroyo, Rafael Levi, Francisco B. Rodriguez, Pablo VaronaO2 Regulation of top-down processing by cortically-projecting parvalbumin positive neurons in basal forebrainEunjin Hwang, Bowon Kim, Hio-Been Han, Tae Kim, James T. McKenna, Ritchie E. Brown, Robert W. McCarley, Jee Hyun ChoiO3 Modeling auditory stream segregation, build-up and bistabilityJames Rankin, Pamela Osborn Popp, John RinzelO4 Strong competition between tonotopic neural ensembles explains pitch-related dynamics of auditory cortex evoked fieldsAlejandro Tabas, André Rupp, Emili Balaguer-BallesterO5 A simple model of retinal response to multi-electrode stimulationMatias I. Maturana, David B. Grayden, Shaun L. Cloherty, Tatiana Kameneva, Michael R. Ibbotson, Hamish MeffinO6 Noise correlations in V4 area correlate with behavioral performance in visual discrimination taskVeronika Koren, Timm Lochmann, Valentin Dragoi, Klaus ObermayerO7 Input-location dependent gain modulation in cerebellar nucleus neuronsMaria Psarrou, Maria Schilstra, Neil Davey, Benjamin Torben-Nielsen, Volker SteuberO8 Analytic solution of cable energy function for cortical axons and dendritesHuiwen Ju, Jiao Yu, Michael L. Hines, Liang Chen, Yuguo YuO9 C. elegans interactome: interactive visualization of Caenorhabditis elegans worm neuronal networkJimin Kim, Will Leahy, Eli ShlizermanO10 Is the model any good? Objective criteria for computational neuroscience model selectionJustas Birgiolas, Richard C. Gerkin, Sharon M. CrookO11 Cooperation and competition of gamma oscillation mechanismsAtthaphon Viriyopase, Raoul-Martin Memmesheimer, Stan GielenO12 A discrete structure of the brain wavesYuri Dabaghian, Justin DeVito, Luca PerottiO13 Direction-specific silencing of the Drosophila gaze stabilization systemAnmo J. Kim, Lisa M. Fenk, Cheng Lyu, Gaby MaimonO14 What does the fruit fly think about values? A model of olfactory associative learningChang Zhao, Yves Widmer, Simon Sprecher,Walter SennO15 Effects of ionic diffusion on power spectra of local field potentials (LFP)Geir Halnes, Tuomo Mäki-Marttunen, Daniel Keller, Klas H. Pettersen,Ole A. Andreassen...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.