Porphyromonas gingivalis is a pathogen in severe periodontal disease. Able to exploit an intracellular lifestyle within primary gingival epithelial cells (GECs), a reservoir of P. gingivalis can persist within the gingival epithelia. This process is facilitated by manipulation of the host cell signal transduction cascades which can impact cell cycle, cell death, and cytokine responses. Using microarrays, we investigated the ability of P. gingivalis 33277 to regulate microRNA (
Primary gingival epithelial cells were cultured in multilayers as a model for the study of interactions with oral bacteria associated with health and periodontal disease. Multilayers maintained at an air-liquid interface in low calcium medium displayed differentiation and cytokeratin properties characteristic of junctional epithelium. Multilayers were infected with fluorescently labeled Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum or Streptococcus gordonii, and bacterial association was determined by confocal microscopy and quantitative image analysis. P. gingivalis invaded intracellularly and spread cell to cell. A. actinomycetemcomitans and F. nucleatum remained extracellular and showed intercellular movement through the multilayer. S. gordonii remained extracellular and predominantly associated with the superficial cell layer. None of the bacterial species disrupted barrier function as measured by transepithelial electrical resistance. P. gingivalis did not elicit secretion of proinflammatory cytokines. However, A. actinomycetemcomitans and S. gordonii induced IL-1β, TNF-α, IL-6 and IL-8 secretion; and F. nucleatum stimulated production of IL-1β and TNF-α. A. actinomycetemcomitans, F. nucleatum and S. gordonii, but not P. gingivalis, increased levels of apoptosis after 24 h infection. The results indicate that the organisms with pathogenic potential were able to traverse the epithelium, while the commensal bacteria did not. In addition, distinct host responses characterized the interaction between the junctional epithelium and oral bacteria.
An association between the gram-positive anaerobe Filifactor alocis and periodontal disease has recently emerged; however, possible pathogenic mechanisms have not been investigated. In this study we examined the responses of primary cultures of gingival epithelial cells (GECs) to infection with F. alocis. Secretion of the proinflammatory cytokines IL-1β, IL-6 and TNF-α from GECs was stimulated by F. alocis infection. F. alocis also induced apoptosis in GECs through pathways that involved caspase-3 but not caspase-9. Apoptosis was coincident with inhibition of MEK (MAPK kinase) activation. These results show that F. alocis has characteristics in common with established periodontal pathogens and has the potential to contribute to periodontal tissue destruction.
Porphyromonas gingivalis secretes a serine phosphatase enzyme, SerB, upon contact with gingival epithelial cells in vitro. The SerB protein plays a critical role in internalization and survival of the organism in epithelial cells. SerB is also responsible for the inhibition of interleukin-8 (IL-8) secretion from gingival epithelial cells infected with P. gingivalis. This study examined the ability of a P. gingivalis SerB mutant to colonize the oral cavity and induce gingival inflammation, immune responses, and alveolar bone resorption in a rat model of periodontal disease. Both P. gingivalis ATCC 33277 and an isogenic ⌬SerB mutant colonized the oral cavities of rats during the 12-week experimental period. Both of the strains induced significant (P < 0.05) systemic levels of immunoglobulin G (IgG) and isotypes IgG1, IgG2a, and IgG2b, indicating the involvement of both T helper type 1 (Th1) and Th2 responses to infection. Both strains induced significantly (P < 0.05) higher levels of alveolar bone resorption in infected rats than in sham-infected control rats. However, horizontal and interproximal alveolar bone resorption induced by the SerB mutant was significantly (P < 0.05) lower than that induced by the parental strain. Rats infected with the ⌬SerB mutant exhibited significantly higher levels of apical migration of the junctional epithelium (P < 0.01) and polymorphonuclear neutrophil (PMN) recruitment (P < 0.001) into the gingival tissues than rats infected with the wild type. In conclusion, in a rat model of periodontal disease, the SerB phosphatase of P. gingivalis is required for maximal alveolar bone resorption, and in the absence of SerB, more PMNs are recruited into the gingival tissues.
Summary Porphyromonas gingivalis a host-adapted opportunistic pathogen produces a serine phosphatase, SerB, known to affect virulence, invasion and persistence within the host cell. SerB induces actin filament rearrangement in epithelial cells, but the mechanistic basis of this is not fully understood. Here we investigated the effects of SerB on the actin depolymerizing host protein cofilin. P. gingivalis infection resulted in the dephosphorylation of cofilin in gingival epithelial cells. In contrast, a SerB deficient mutant of P. gingivalis was unable to cause cofilin dephosphorylation. The involvement of cofilin in P. gingivalis invasion was determined by quantitative image analysis of epithelial cells in which cofilin had been knocked-down or knocked-in with various cofilin constructs. siRNA-silencing of cofilin led to a significant decrease in numbers of intracellular P. gingivalis marked by an absence of actin colocalization. Transfection with wild-type cofilin or constitutively active cofilin both increased numbers of intracellular bacteria, while constitutively inactive cofilin abrogated invasion. Expression of LIM kinase resulted in reduced P. gingivalis invasion, an effect that was reversed by expression of constitutively active cofilin. These results show that P. gingivalis SerB activity induces dephosphorylation of cofilin, and that active cofilin is required for optimal invasion into gingival epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.