Viroplasms are discrete structures formed in the cytoplasm of rotavirus-infected cells and constitute the replication machinery of the virus. The non-structural proteins NSP2 and NSP5 localize in viroplasms together with other viral proteins, including the polymerase VP1, VP3 and the main inner-core protein, VP2. NSP2 and NSP5 interact with each other, activating NSP5 hyperphosphorylation and the formation of viroplasm-like structures (VLSs). We have used NSP2 and NSP5 fused to the enhanced green fluorescent protein (EGFP) to investigate the localization of both proteins within viroplasms in virus-infected cells, as well as the dynamics of viroplasm formation. The number of viroplasms was shown first to increase and then to decrease with time post-infection, while the area of each one increased, suggesting the occurrence of fusions. The interaction between NSP2 and a series of NSP5 mutants was investigated using two different assays, a yeast two-hybrid system and an in vivo binding/immunoprecipitation assay. Both methods gave comparable results, indicating that the N-terminal region (33 aa) as well as the C-terminal part (aa 131-198) of NSP5 are required for binding to NSP2. When fused to the N and C terminus of EGFP, respectively, these two regions were able to confer the ability to localize in the viroplasm and to form VLSs with NSP2.
Rotavirus viroplasms are cytosolic, electron-dense inclusions corresponding to the viral machinery of replication responsible for viral template transcription, dsRNA genome segments replication and assembly of new viral cores. We have previously observed that, over time, those viroplasms increase in size and decrease in number. Therefore, we hypothesized that this process was dependent on the cellular microtubular network and its associated dynamic components. Here, we present evidence demonstrating that viroplasms are dynamic structures, which, in the course of an ongoing infection, move towards the perinuclear region of the cell, where they fuse among each other, thereby gaining considerably in size and, simultaneouly, explaining the decrease in numbers. On the viral side, this process seems to depend on VP2 for movement and on NSP2 for fusion. On the cellular side, both the temporal transition and the maintenance of the viroplasms are dependent on the microtubular network, its stabilization by acetylation, and, surprisingly, on a kinesin motor of the kinesin-5 family, Eg5. Thus, we provide for the first time deeper insights into the dynamics of rotavirus replication, which can explain the behavior of viroplasms in the infected cell.
Rotavirus NSP5 is a nonstructural protein that localizes in cytoplasmic viroplasms of infected cells. NSP5 interacts with NSP2 and undergoes a complex posttranslational hyperphosphorylation, generating species with reduced polyacrylamide gel electrophoresis mobility. This process has been suggested to be due in part to autophosphorylation. We developed an in vitro phosphorylation assay using as a substrate an in vitrotranslated NSP5 deletion mutant that was phosphorylated by extracts from MA104 cells transfected with NSP5 mutants but not by extracts from mock-transfected cells. The phosphorylated products obtained showed shifts in mobility similar to what occurs in vivo. From these and other experiments we concluded that NSP5 activates a cellular kinase(s) for its own phosphorylation. Three NSP5 regions were found to be essential for kinase(s) activation. Glutathione S-transferase-NSP5 mutants were produced in Escherichia coli and used to determine phosphoacceptor sites. These were mapped to four serines (Ser 153 , Ser 155 , Ser 163 , and Ser 165 ) within an acidic region with homology to casein kinase II (CKII) phosphorylation sites. CKII was able to phosphorylate NSP5 in vitro. NSP5 and its mutants fused to enhanced green fluorescent protein were used in transfection experiments followed by virus infection and allowed the determination of the domains essential for viroplasm localization in the context of virus infection.Rotaviruses are double-stranded RNA viruses of the family Reoviridae causing diarrhea worldwide in several species, including humans (3, 4). Infective particles replicate in the cytoplasm of infected cells. Following infection, loss of the outer shell activates the virus transcriptase activity to produce viral mRNAs (11,18). These RNAs direct the synthesis of virusencoded proteins and serve as templates for the synthesis of genomic double-stranded RNA (replication). This step takes place in particular structures called viroplasms. Viroplasms also support the assembly of new particles in a process coupled to replication (21). NSP2 and NSP5 are two nonstructural proteins that localize in viroplasms, together with the structural proteins VP1, VP2, VP3, and VP6 (24, 32). NSP2 and NSP5 were shown to interact in virus-infected cells as well as in cells transfected with the two proteins. In the latter case, this interaction leads to the formation of viroplasm-like structures (VLS) (9) and enhancement of NSP5 phosphorylation (1). In addition, in virus-infected cells, the virus polymerase VP1 was found associated with NSP2 and NSP5 (1). NSP2, self-assembled into homomultimers (27, 30), has recently been associated with a nucleoside triphosphatase activity (28) and shown to have helix-destabilizing activity, suggesting a possible role in viral RNA unwinding (14, 29).NSP5, encoded in genome segment 11, is a phosphorylated and O-glycosylated serine-and threonine-rich protein (2, 12) of 198 amino acids with a molecular mass of 26 to 28 kDa. This protein shows an extraordinary level of phosphorylation that c...
Rotavirus NSP5 is a nonstructural protein that localizes in viroplasms of virus-infected cells. NSP5 interacts with NSP2 and undergoes a complex posttranslational hyperphosphorylation, generating species with reduced PAGE mobility. Here we show that NSP5 operates as an autoregulator of its own phosphorylation as a consequence of two distinct activities of the protein: substrate and activator. We developed an in vivo hyperphosphorylation assay in which two NSP5 mutant constructs are cotransfected. One of them, fused to an 11-aa tag, served as substrate whereas the other was used to map NSP5 domains required for activation. The activation and substrate activity could be uncoupled, demonstrating a hyperphosphorylation process in trans between the activator and substratum. This process involved dimerization of the two components through the 18-aa C-terminal tail. Phosphorylation of Ser-67 within the SDSAS motif (amino acids 63-67) was required to trigger hyperphosphorylation by promoting the activation function. We present evidence of casein kinase 1␣ being the protein kinase responsible for this key step as well as for the consecutive ones leading to NSP5 hyperphosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.