This study developed an artificial feeding (AF) method to replace direct host feeding (DHF) for the maintenance of Aedes aegypti and Anopheles minimus mosquito colonies. The procedure can be adopted by all laboratories due to its simple and affordable materials and design. The apparatus consists of heparinized cow blood contained in a 5cm diameter glass petri dish with 5cm(2) Parafilm M (Bemis(®)) stretched thinly over the top, with a pre-heated bag of vegetable oil placed underneath to keep the blood warm. Both parts are contained within an insulated Styrofoam™ box with a hole in the lid for mosquitoes to access the membrane. Mosquitoes are fed by AF for 15min at a time. Feeding rate and fecundity of Ae. aegypti mosquitoes feeding on the AF device were compared to those feeding on a live rat (DHF(r)), and of Anopheles minimus mosquitoes feeding on the AF device compared to those feeding on a human arm (DHF(h)). Aedes aegypti mosquitoes fed by AF or DHF(r) had similar feeding rates (38.2±21.5% and 35.7±18.2%, respectively) and overall egg production (1.5% difference). Anopheles minimus mosquitoes fed by the AF method had a lower feeding rate (52.0±1.0% for AF compared to 70.7±20.2% for DHF(h)) and overall egg production (40% reduction compared to DHF(h)). However, the number of eggs produced by AF-fed mosquitoes (1808 eggs per 100 mosquitoes) was still sufficient for colony maintenance, and with increased feeding time both parameters are expected to increase. Reduced feeding rate and overall egg production was observed when Ae. aegypti mosquitoes were fed on blood refrigerated for over two weeks. In conclusion, an AF device has been developed which can replace DHF for Ae. aegypti and An. minimus colony maintenance when using blood refrigerated for a maximum of two weeks.
Huge areas of tropical forests are degraded, reducing their biodiversity, carbon, and timber value. The recovery of these degraded forests can be significantly inhibited by climbing plants such as lianas. Removal of super‐abundant climbers thus represents a restoration action with huge potential for application across the tropics. While experimental studies largely report positive impacts of climber removal on tree growth and biomass accumulation, the efficacy of climber removal varies widely, with high uncertainty as to where and how to apply the technique. Using meta‐analytic techniques, we synthesize results from 26 studies to quantify the efficacy of climber removal for promoting tree growth and biomass accumulation. We find that climber removal increases tree growth by 156% and biomass accumulation by 209% compared to untreated forest, and that efficacy remains for at least 19 years. Extrapolating from these results, climber removal could sequester an additional 32 Gigatons of CO2 over 10 years, at low cost, across regrowth, and production forests. Our analysis also revealed that climber removal studies are concentrated in the Neotropics (N = 22), relative to Africa (N = 2) and Asia (N = 2), preventing our study from assessing the influence of region on removal efficacy. While we found some evidence that enhancement of tree growth and AGB accumulation varies across disturbance context and removal method, but not across climate, the number and geographical distribution of studies limits the strength of these conclusions. Climber removal could contribute significantly to reducing global carbon emissions and enhancing the timber and biomass stocks of degraded forests, ultimately protecting them from conversion. However, we urgently need to assess the efficacy of removal outside the Neotropics, and consider the potential negative consequences of climber removal under drought conditions and for biodiversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.