It is often difficult to evaluate the level of contamination in small urban rivers because pollution is mainly diffuse, with low levels of numerous substances. The use of a coupled approach using both chemical and biological measurements may provide an integrated evaluation of the impact of micro-pollution on the river. Zebra mussels were transplanted along a metal and organic pollution gradient in spring 2008. For two months, mussels and water samples were collected from two sites every two weeks and analyzed for metal and PAH content as well as water physicochemical parameters. Diffusive gradients in thin film (DGT) were also used to assess levels of labile metals. Exposure of mussels to contaminants and potential impact were evaluated using physiological indices and various biomarkers including condition index (CI), defense mechanisms (glutathione-S-transferase: GST), digestive enzymes (amylase and cellulase) and genotoxicity (micronucleus test: MN and comet assay: CA). For most contaminants, the water contamination was significantly higher downstream. Bioaccumulation in zebra mussels was related to water contamination in the framework of the biodynamic model, which allowed us to take into account the biological dilution that was caused by the growth of soft tissue downstream. Thus, metal influxes were on average two times higher downstream than upstream in particular for Zn, Cr, Cu and Cd. Significant differences in condition index were observed (final CI was 0.42 ± 0.03 downstream and 0.31 ± 0.03 upstream) reflecting a better food availability downstream. Moreover a significant decrease of GST activity and digestive enzymes activity in the cristalline style was observed downstream. Interpreting this decrease requires considering not only micro-pollution but also the trophic status related to the water's physicochemistry. The MN test and the CA on gill cells highlighted genotoxicity in mussels transplanted downstream compared to upstream.
Metal bioavailability depends on the presence of organic ligands in the water and on the concentrations of competitive cations. The present study aims at testing whether the diffusive gradient in thin films technique (DGT) could be used to take into account Cd speciation and its consequences on bioavailability in a bioaccumulation model and whether the influences of the Ca concentration and temperature also should be considered. Four kinetic experiments were conducted on Gammarus pulex: a calibration of Cd turnover rates and of the DGT lability in mineral water, a study of the influence f ethylenediaminetetraacetic acid (EDTA) and humic acids (HA) on uptake rates, and two experiments testing the influence of the Ca concentrations and temperature on Cd uptake clearance rates (ku). In mineral water, where Cd was considered fully labile, the ku was 0.46 L g⁻¹ d⁻¹, and the depuration rate was 0.032 d⁻¹. The initial Cd influxes were lowered significantly by additions of 10 μg L⁻¹ of EDTA or 10 mg L⁻¹ of HA in the water but not at 5 mg L⁻¹HA, even if DGT measurements proved that Cd formed Cd-HA complexes in that treatment. Increasing Ca concentrations lowered ku values, and a competitive inhibition model between Ca and Cd fitted the data. A 30% enhancement of k, values was observed when the temperature was increased by 8°C, which appeared comparatively as a weak effect. Thus, taking into account the metal speciation and the influence of the Ca concentration should improve Cd bioaccumulation modeling in amphipods. In freshwater, where metal bioavailability is reduced by the presence of dissolved organic matter, forecasting Cd waterborne uptake using the labile concentrations should allow robust comparisons between laboratory and field studies.
A simple, low-cost and non-radioactive short-term toxicity test was developed to study the effects of urban metals on natural freshwater periphytic communities. β-glucosidase activity of natural freshwater biofilms collected in situ was chosen as an endpoint. Metals (Cd, Cu, Ni, Pb, and Zn) successfully inhibited bacterial enzymatic activity after a 1-h exposure enabling the calculation of EC(50). The EC(50) value of a biofilm sample varied with the Total Suspended Solids concentration (TSS) of the biofilm suspension, showing that EC(50) values (expressed as total added metal concentrations) are not representative of the bioavailable metal concentration during the toxicity test. For Cu, Cd, Ni, Zn and Pb, the EC(50) values increased linearly with the TSS concentration leading us to define a normalized EC(50): the value of the EC(50) divided by the corresponding TSS concentration. Normalized EC(50) proved to be a robust, reliable way to assess metal tolerance of a biofilm for Cd, Cu, Ni, Zn and Pb. Normalized EC(50) obtained, expressed as kg(metal)/g(TSS), varied between 0.2 to 7.6 for Cu, 1 to 8 for Cd, 1.8 to 92.3 for Ni, 1.8 to 76.6 for Zn and 25 to 189 for Pb.
The biodynamic and saturation models offer promising lines of enquiry to predict the bioaccumulation of metals by aquatic organisms. However, in order to construct these models, the accumulation strategies have to be defined for each metal/organism couple in controlled conditions. This study aims at modelling the waterborne bioaccumulation of Ni and the influence of the water's geochemical properties on this process in a crustacean that is widely distributed in Europe, Gammarus pulex. In the laboratory, G. pulex was exposed to several Ni concentrations (from 0.001 to 100 mg L(-1)) in aquatic microcosms. Our results show that G. pulex is very tolerant to Ni (LC50(48 h)=477 mg L(-1) Ni). Time course experiments enabled the construction of a biodynamic model by determining the uptake (k(u)) and elimination (k(e)) rate constants. When the exposure concentration exceeded 1 mg L(-1) Ni, the metal uptake reached a maximum due to a limited number of binding sites for Ni. Therefore, the organism's maximal capacity to accumulate the metal (B(max)) and the half-saturation constant (K) were determined to establish the saturation model. We showed that the two models are comparable for the lowest exposure concentrations (<1 mg L(-1) Ni), with k(u)/k(e)=B(max)/K. Then, the bioaccumulation of Ni was recorded in waters exhibiting various concentrations of three major ions (Na(+), Mg(2+) and Ca(2+)). Only Ca had an inhibitory effect on the Ni uptake. This study reports for the first time the bioaccumulation of Ni in G. pulex. Because of its high tolerance to Ni and its high capacity to accumulate this metal, this crustacean could be used as an indicator of Ni bioavailability in freshwaters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.