Although the study predates extensive use of echinocandins and voriconazole, these findings demonstrate that posaconazole is an alternative to salvage therapy for patients with invasive aspergillosis who are refractory to or intolerant of previous antifungal therapy.
One of the most challenging issues in the design of phase II/III clinical trials of antimicrobial agents is dose selection. The choice is often based on preclinical data from pharmacokinetic (PK) studies with animals and healthy volunteers but is rarely linked directly to the target organisms except by the MIC, an in vitro measure of antimicrobial activity with many limitations. It is the thesis of this paper that rational dose-selection decisions can be made on the basis of the pharmacodynamics (PDs) of the test agent predicted by a mathematical model which uses four data sets: (i) the distribution of MICs for clinical isolates, (ii) the distribution of the values of the PK parameters for the test drug in the population, (iii) the PD target(s) developed from animal models of infection, and (iv) the protein binding characteristics of the test drug. In performing this study with the new anti-infective agent evernimicin, we collected a large number (n ؍ 4,543) of recent clinical isolates of gram-positive pathogens (Streptococcus pneumoniae, Enterococcus faecalis and Enterococcus faecium, and Staphylococcus aureus) and determined the MICs using E-test methods (AB Biodisk, Stockholm, Sweden) for susceptibility to evernimicin. Population PK data were collected from healthy volunteers (n ؍ 40) and patients with hypoalbuminemia (n ؍ 12), and the data were analyzed by using NPEM III. PD targets were developed with a neutropenic murine thigh infection model with three target pathogens: S. pneumoniae (n ؍ 5), E. faecalis (n ؍ 2), and S. aureus (n ؍ 4). Drug exposure or the ratio of the area under the concentration-time curve/MIC (AUC/MIC) was found to be the best predictor of microbiological efficacy. There were three possible microbiological results: stasis of the initial inoculum at 24 h (10 7 CFU), log killing (pathogen dependent, ranging from 1 to 3 log 10 ), or 90% maximal killing effect (90% E max ). The levels of protein binding in humans and mice were similar. The PK and PD of 6 and 9 mg of evernimicin per kg of body weight were compared; the population values for the model parameters and population covariance matrix were used to generate five Monte Carlo simulations with 200 subjects each. The fractional probability of attaining the three PD targets was calculated for each dose and for each of the three pathogens. All differences in the fractional probability of attaining the target AUC/MIC in this PD model were significant. For S. pneumoniae, the probability of attaining all three PD targets was high for both doses. For S. aureus and enterococci, there were increasing differences between the 6-and 9-mg/kg evernimicin doses for reaching the 2 log killing (S. aureus), 1 log killing (enterococci), or 90% E max AUC/MIC targets. This same approach may also be used to set preliminary in vitro MIC breakpoints.The drug development process traditionally follows the initial "first-in-human" pharmacokinetic (PK) studies with phase II dose-finding studies. Such studies are often relatively small and provide litt...
Pseudomonas aeruginosa is an ubiquitous environmental bacterium. It can be recovered, often in high numbers, in common food, especially vegetables. Moreover, it can be recovered in low numbers in drinking water. A small percentage of clones of P. aeruginosa possesses the required number of virulence factors to cause infection. However, P. aeruginosa will not proliferate on normal tissue but requires previously organs. Further narrowing the risk to human health is that only certain specific hosts are at risk, including patients with profound neutropenia, cystic fibrosis, severe burns, and those subject to foreign device installation. Other than these very well-defined groups, the general population is refractory to infection with P. aeruginosa. Because of its ubiquitous nature, it is not only not practical to eliminate P. aeruginosa from our food and drinking water, but attempts to do so would produce disinfection byproducts more hazardous than the species itself. Moreover, because there is no readily available sensitive and specific means to detect and identify P. aeruginosa available in the field, any potential regulation governing its control would not have a defined laboratory test measure of outcome. Accordingly, attempts to regulate P. aeruginosa in drinking water would not yield public health protection benefits and could, in fact, be counterproductive in this regard.
These data suggest that posaconazole, as an oral medication, has clinical activity against fungal infections of the CNS and may provide a valuable alternative to parenteral therapy in patients failing existing antifungal agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.