Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) are ER foldases identified as possible ALS biomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized four ALS-linked mutations recently identified in two major PDI genes, PDIA1 and PDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of these PDI variants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutant PDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of these PDI mutants. Finally, targeting ERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifies ER proteostasis imbalance as a risk factor for ALS, driving initial stages of the disease.
a b s t r a c tProtein disulfide isomerases (PDIs) are a family of foldases and chaperones primarily located at the endoplasmic reticulum that catalyze the formation and isomerization of disulfide bonds thereby facilitating protein folding. PDIs also perform important physiological functions in protein quality control, cell death, and cell signaling. Protein misfolding is involved in the etiology of the most common neurodegenerative diseases, including Alzheimer, Parkinson, amyotrophic lateral sclerosis, Prion-related disorders, among others. Accumulating evidence indicate altered expression of PDIs as a prominent and common feature of these neurodegenerative conditions. Here we overview most recent advances in our understanding of the possible functional contribution of PDIs to neurodegeneration, depicting a complex and poorly understood scenario. Possible therapeutic benefits of targeting PDIs in a disease context and their use as biomarkers are discussed.
Background: ERp57 is a disulfide isomerase up-regulated in prion related-disorders, but its impact on PrP biology is unknown. Results: ERp57 gain-and loss-of-function can increase or reduce, respectively, PrP levels in neurons, both in cell culture and animal models. Conclusion: ERp57 regulates steady-state prion protein levels. Significance: ERp57 is a cellular factor involved in the synthesis and folding of PrP, representing a novel therapeutic target in prion-related diseases.
Performance monitoring-the ability to monitor ongoing performance to detect and correct errors-is a core component of cognitive control. Impairments in performance monitoring have been associated with several psychiatric disorders, including attention deficit hyperactivity disorder and substance use disorder. Recent research indicates that the practice of meditation, as a mental training technique, may improve cognitive control. However, if and to what extent regular long-term meditation practice may enhance performance monitoring is currently unknown. The present study examined effects of meditation practice on behavioral and electrophysiological indices of performance monitoring. A group of meditators and an experience-matched active control group (non-meditator athletes) performed an Eriksen-Flanker task while their brain activity was recorded using electroencephalography (EEG).Behaviorally, meditators made significantly fewer errors than controls on incongruent trials. EEG analyses revealed a general increase in the amplitude of two brain potentials associated with performance monitoring-the error negativity (Ne) or errorrelated negativity (ERN) and correct-related negativity (CRN)-in meditators compared to controls. These findings, which are indicative of enhanced performance monitoring in meditators, corroborate the idea that meditation could be a recommendable practice to train and improve cognitive control, specifically performance monitoring.
Research suggests that mindfulness-practices may aid smoking cessation. Yet, the neural mechanisms underlying the effects of mindfulness-practices on smoking are unclear. Response inhibition is a main deficit in addiction, is associated with relapse, and could therefore be a candidate target for mindfulness-based practices. The current study hence investigated the effects of a brief mindfulness-practice on response inhibition in smokers using behavioral and electroencephalography (EEG) measures. Fifty participants (33 females, mean age 20 years old) underwent a protocol of cigarette exposure to induce craving (cue-exposure) and were then randomly assigned to a group receiving mindfulness-instructions or control-instructions (for 15 minutes approximately). Immediately after this, they performed a smoking Go/NoGo task, while their brain activity was recorded. At the behavioral level, no group differences were observed. However, EEG analyses revealed a decrease in P3 amplitude during NoGo vs. Go trials in the mindfulness versus control group. The lower P3 amplitude might indicate less-effortful response inhibition after the mindfulness-practice, and suggest that enhanced response inhibition underlies observed positive effects of mindfulness on smoking behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.