Fetal electrocardiogram (ECG) waveform analysis along with cardiac time intervals (CTIs) measurements are critical for the management of high-risk pregnancies. Currently, there is no system that can consistently and accurately measure fetal ECG. In this work, we present a new automatic approach to attenuate the maternal ECG in the frequency domain and enhance it with measurable CTIs. First, the coherent components between the maternal ECG and abdominal ECG were identified and subtracted from the latter in the frequency domain. The residual was then converted into the time domain using the inverse Fourier transform to yield the fetal ECG. This process was improved by averaging multiple beats. Two fetal cardiologists, blinded to the method, assessed the quality of fetal ECG based on a grading system and measured the CTIs. We evaluated the fetal ECG quality of our method and time-based methods using one synthetic dataset, one human dataset available in the public domain, and 37 clinical datasets. Among the 37 datasets analyzed, the mean average (± standard deviation) grade was 3.49 ± 1.22 for our method vs. 2.64 ± 1.26 for adaptive interference cancellation (p-value < 0.001), thus showing the frequency-based fetal ECG extraction was the superior method, as assessed from our clinicians’ perspectives. This method has the potential for use in clinical settings.
Introduction: Early detection and monitoring for malignant arrhythmias is fundamental to prenatal care in long QT syndrome (LQTS). Recently, we studied the feasibility of isolating the fetal electrocardiogram (fECG) and measuring elec-Sethi et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.