Galleria mellonella (greater wax moth or honeycomb moth) has been introduced as an alternative model to study microbial infections. G. mellonella larvae can be easily and inexpensively obtained in large numbers and are simple to use as they don't require special lab equipment. There are no ethical constraints and their short life cycle makes them ideal for large-scale studies. Although insects lack an adaptive immune response, their innate immune response shows remarkable similarities with the immune response in vertebrates.This review gives a current update of what is known about the immune system of G. mellonella and provides an extensive overview of how G. mellonella is used to study the virulence of Gram-positive and Gram-negative bacteria. In addition, the use of G. mellonella to evaluate the efficacy of antimicrobial agents and experimental phage therapy are also discussed. The review concludes with a critical assessment of the current limitatons of G. mellonella infection models.
BackgroundIn congestive heart failure the balance between cell death and cell survival in cardiomyocytes is compromised. Sirtuin 1 (Sirt1) activates cell survival machinery and has been shown to be protective against ischemia/reperfusion injury in murine heart. The role of Sirt1 in heart failure, especially in human hearts is not clear.ResultsThe expression of Sirt1 and other (associated) downstream molecules in human cardiomyocytes from patients with advanced heart failure was examined. Sirt1 was down-regulated (54.92% ± 7.80% in advanced heart failure samples compared with healthy control cardiomyocytes). The modulation of molecules involved in cardiomyocyte survival and death in advanced heart failure were also examined. The expression of Mn-superoxide dismutase and thioredoxin1, as well as an antiapoptotic molecule, Bcl-xL, were all significantly reduced in advanced heart failure cardiomyoctes (0.71 ± 0.02-fold, 0.61 ± 0.05-fold, and 0.53 ± 0.08-fold vs. control, respectively); whereas the expression of proapoptotic molecule Bax was significantly increased (1.62 ± 0.18-fold vs. control). Increased TUNEL-positive number of cardiomyocytes and oxidative stress, confirmed by 8-hydorxydeoxyguanosine staining, were associated with advanced heart failure. The AMPK-Nampt-Sirt1 axis also showed inhibition in advanced heart failure in addition to severely impaired AMPK activation. Increased p53 (acetyl form) and decreased FoxO1 translocation in the nucleus may be the mechanism of down-regulation of antioxidants and up-regulation of proapoptotic molecules due to low expression of Sirt1.ConclusionIn advanced heart failure, low Sirt1 expression, like aging change may be a significant contributing factor in the downregulation of antioxidants and upregulation of proapoptotic molecules through the p53, FoxO1, and oxidative stress pathways.
The human pathogen Group A Streptococcus (GAS) produces pili that are involved in adhesion and colonisation of the host. These surface-exposed pili are immunogenic and therefore represent an attractive target for vaccine development. The pilus is encoded in the genomic region known as the fibronectin-collagen-T-antigen (FCT)-region, of which at least nine different types have been identified. In this study we investigate expressing two of the most common FCT-types (FCT-3 and FCT-4) in the food-grade bacteria Lactococcus lactis for use as a mucosal vaccine. We show that mucosally delivered L. lactis expressing GAS pili generates specific antibody responses in rabbits. Rabbit anti-pilus antibodies were shown to have both a neutralising effect on bacterial adhesion, and immunised rabbit antiserum was able to facilitate immune-mediated killing of bacteria via opsonophagocytosis. Furthermore, intranasal immunisation of mice improved clearance rates of GAS after nasopharyngeal challenge. These results demonstrate the potential for a novel, pilus-based vaccine to protect against GAS infections.
Peptide vaccines are an attractive strategy to engineer the induction of highly targeted immune responses and avoid potentially allergenic and/or reactogenic protein regions. However, peptides by themselves are often unstable and poorly immunogenic, necessitating the need for an adjuvant and a specialised delivery system. We have developed a novel peptide delivery platform (PilVax) that allows the presentation of a stabilised and highly amplified peptide as part of the group A streptococcus serotype M1 pilus structure (PilM1) on the surface of the non-pathogenic bacterium Lactococcus lactis. To show proof of concept, we have successfully inserted the model peptide Ova324–339 into 3 different loop regions of the backbone protein Spy0128, which resulted in the assembly of the pilus containing large numbers of peptide on the surface of L. lactis. Intranasal immunisation of mice with L. lactis PilM1-Ova generated measurable Ova-specific systemic and mucosal responses (IgA and IgG). Furthermore, we show that multiple peptides can be inserted into the PilVax platform and that peptides can also be incorporated into structurally similar, but antigenically different pilus structures. PilVax may be useful as a cost-effective platform for the development of peptide vaccines against a variety of important human pathogens.
Group A Streptococcus (GAS), or Streptococcus pyogenes, is a human pathogen that causes diseases ranging from skin and soft tissue infections to severe invasive diseases, such as toxic shock syndrome. Each GAS strain carries a particular pilus type encoded in the variable fibronectin-binding, collagen-binding, T antigen (FCT) genomic region. Here, we describe the functional analysis of the serotype M2 pilus encoded in the FCT-6 region. We found that, in contrast to other investigated GAS pili, the ancillary pilin 1 lacks adhesive properties. Instead, the backbone pilin is important for host cell adhesion and binds several host factors, including fibronectin and fibrinogen. Using a panel of recombinant pilus proteins, GAS gene deletion mutants and Lactococcus lactis gain-of-function mutants we show that, unlike other GAS pili, the FCT-6 pilus also contributes to immune evasion. This was demonstrated by a delay in blood clotting, increased intracellular survival of the bacteria in macrophages, higher bacterial survival rates in human whole blood and greater virulence in a Galleria mellonella infection model in the presence of fully assembled FCT-6 pili.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.