The preponderance of temporomandibular joint (TMJ) disorders involving TMJ disc injury inspires the need to further explore tissue engineering strategies. The objective of this study was to examine the potential of poly (glycerol sebacate) (PGS), a biocompatible, biodegradable elastomer, as a porous scaffold material for the TMJ disc. Goat fibrochondrocytes were seeded on PGS at three seeding densities (25, 50, 100 million cells/mL scaffold), respectively, and cultured for 24 h, 2 weeks, and 4 weeks. The resulting histological, biochemical, and biomechanical properties were determined. Histological staining revealed an abundance of both collagen and glycosaminoglycans (GAG) throughout the high seeding density scaffolds at 4 weeks. There was also a significant increase in the cellular content in all groups over the four-week period, showing that the scaffolds promoted cell attachment and proliferation. The PGS scaffolds supported the deposition of large quantities of extracellular matrix, with differences noted between seeding density groups. At 4 weeks, the medium and high seeding density groups had significantly more collagen per scaffold (181±46 μg and 218±24 μg, respectively) than the low seeding density group (105±28 μg) (p<0.001). At 4 weeks, the medium and high seeding density groups also had a significantly higher GAG content per scaffold (702±253 μg and 773±187 μg, respectively), than the low seeding density group (324±73 μg) (p<0.001). The compression tangent modulus was significantly greater at 4 weeks than 24 h (123.6±86 kPa and 26.2±5 kPa, respectively) (seeding density groups combined) (p<0.001), with no differences between seeding groups at each time point. After 4 weeks, the tangent modulus of the low seeding density group was in a similar range of the goat TMJ disc (180±127 kPa compared to 304±141 kPa, respectively). The results show that cell seeding density and culture time do have an effect on both the biochemical and biomechanical properties of PGS scaffolds. These findings demonstrate that PGS has great potential as a scaffold material for TMJ disc engineering.
Magnesium has recently been explored as a potential biomaterial for degradable orthopedic implants but its effect on fibrocartilage remains unknown. The objective of this study was to assess the effect of high concentrations of magnesium ions on the matrix production of goat costal fibrochondrocytes in vitro. Cells were cultured using a scaffoldless approach with media containing magnesium chloride (MgCl(2)) or magnesium sulfate (MgSO(4)) at concentrations of 20, 50, and 100 mM in addition to the baseline magnesium concentration of 0.8 mM MgSO(4). At 4 weeks, there were no significant differences in compressive tangent modulus and total matrix production between constructs cultured in 20 mM Mg(2+) and the 0.8 mM Mg(2+) control (435 ± 47 kPa). There was a significant decrease in compressive tangent modulus compared to the 0.8 mM Mg(2+) constructs in the 50 mM MgCl(2) and MgSO(4) groups, while the 100 mM groups were not mechanically testable (p < 0.05). The collagen and glycosaminoglycan (GAG) content of the 50 and 100 mM MgCl(2) and MgSO(4) constructs was significantly lower than the control (6.9 ± 0.5% and 16.5 ± 1.3% per dry weight, respectively) (p < 0.05). The results show that goat costal fibrochondrocytes exhibit a high degree of resiliency to magnesium ion concentrations up to 20 mM in vitro.
Animal models for temporomandibular joint disorder (TMD) or degradation are necessary for assessing the value of current and future tissue engineering therapies. After reviewing the literature, it is quite apparent that most TMD animal studies can be categorized into chemical approaches or surgical/mechanical approaches. Overall, it was found that the top five cited manuscripts for all chemical models were cited by almost 40% more manuscripts than the top five manuscripts for surgical/mechanical models. It is clear that the chemical approaches have focused on the inflammatory aspect of TMDs and its relationship to pain. However, chemical irritants must be tested in larger animal models, and the effect of short-term inflammation on the mechanical properties of the fibrocartilage must be examined. Nevertheless, therapeutic approaches aimed at reducing or controlling inflammation could use the established chemical methods. Surgical/mechanical methods can be used as negative controls for first generation TMJ tissue engineering approaches when the therapy is applied immediately after injury. Next generation tissue engineering approaches will require testing on tissues degenerated for a few months after the surgical/mechanical methods, with enhanced functional assessment techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.