Repair or anastomosis of intestinal injuries should be considered in all patients. However, leak rate increases with fascial closure beyond day 5 and with left-sided colonic anastomoses. Investigating the physiologic basis for intestinal vulnerability of the left colon and in the open abdomen is warranted.
Extracorporeal circulatory devices such as hemodialysis and extracorporeal membrane oxygenation can be lifesaving; however, they are also prone to pathologic events including device failure, venous and arterial thrombosis, hemorrhage, and an accelerated risk for atherosclerotic disease due to interactions between blood components and device surfaces of varying biocompatibility. While extracorporeal devices may be used acutely for limited periods of time (eg, extracorporeal membrane oxygenation, continuous venovenous hemofiltration, therapeutic apheresis), some patients require chronic use of these technologies (eg, intermittent hemodialysis and left ventricular assist devices). Given the substantial thrombotic risks associated with extracorporeal devices, multiple antiplatelet and anticoagulation strategies—including unfractionated heparin, low‐molecular‐weight heparin, citrate, direct thrombin inhibitors, and direct oral anticoagulants, have been used to mitigate the thrombotic milieu within the patient and device. In the following manuscript, we outline the current data on anticoagulation strategies for commonly used extracorporeal circulatory devices, highlighting the potential benefits and complications involved with each.
Objectives: The impact of two multileaf collimator (MLC) systems for linear accelerator-based intracranial stereotactic radiosurgery (SRS) was assessed. Methods: 68 lesions formed the basis of this study. 2.5 mm leaf width plans served as reference. Comparative plans, with identical planning parameters, were based on a 5 mm leaf width MLC system. Two collimation strategies, with collimation fixed at 0 u or 90 u and optimised per arc or beam, were also assessed. Dose computation was based on the pencil beam algorithm with allowance for tissue heterogeneity. Plan normalisation was such that 100% of the prescription dose covered 95% of the planning target volume. Plan evaluation was based on target coverage and normal tissue avoidance criteria. Results: The median conformity index difference between the MLC systems ranged between 0.8% and 14.2%; the 2.5 mm MLC exhibited better dose conformation. The median reduction of normal tissue exposed to >100%, >50% and >25% of the prescription dose ranged from 13.4% to 29.7%, favouring the 2.5 mm MLC system. Dose fall-off was steeper for the 2.5 mm MLC system with an overall median absolute difference ranging from 0.4 to 1.2 mm. The use of collimation optimisation resulted in a decrease in differences between the MLC systems. The results demonstrated the dosimetric merit of the 2.5 mm leaf width MLC system over the 5 mm leaf width system, albeit small, for the investigated range of intracranial SRS targets.
Conclusion:The clinical significance of these results warrants further investigation to determine whether the observed dosimetric advantages translate into outcome improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.