Summary The SRC-family kinase LYN is highly expressed in triple-negative/basal-like breast cancer (TNBC) and in the cell-of-origin of these tumors, c-KIT-positive luminal progenitors. Here we demonstrate LYN is a downstream effector of c-KIT in normal mammary cells and protective of apoptosis upon genotoxic stress. LYN activity is modulated by PIN1, a prolyl isomerase, and in BRCA1-mutant TNBC PIN1 upregulation activates LYN independently of c-KIT. Furthermore, the full-length LYN splice isoform (as opposed to the Δaa25-45 variant) drives migration and invasion of aggressive TNBC cells, while the ratio of splice variants is informative for breast cancer-specific survival across all breast cancers. Thus, dual mechanisms – uncoupling from upstream signals and splice isoform ratios – drive the activity of LYN in aggressive breast cancers.
Background: Triple negative breast cancer (TNBC) is the subset of breast cancer associated with the poorest outcome, and currently lacks targeted treatments. Standard of care (SoC) chemotherapy often consists of DNA damaging chemotherapies ± taxanes, with a range of responses observed. However, we currently lack biomarkers to predict this response and lack alternate treatment options. Methods: Pin1 expression was modulated in vitro and proliferation and treatment response was studied. Pin1 expression was analysed in patient samples and correlated with clinical outcome. Results: In this study, we have shown that the prolyl isomerase, Pin1, which is highly expressed in TNBC, plays a key role in pathogenesis of the disease. Knockdown of Pin1 in TNBC resulted in cell death while the opposite is seen in normal cells. We revealed for the first time that loss of Pin1 leads to increased sensitivity to Taxol but only in the absence of functional BRCA1. Conversely, loss of Pin1 results in decreased sensitivity to DNA-damaging agents independent of BRCA1 status. Analysis of Pin1 gene or IHC-based expression in over 200 TNBC patient samples revealed a novel role for Pin1 as a TNBC-specific biomarker, with high expression associated with improved outcome in the context of SoC chemotherapy. Preliminary data indicated this may be extended to other treatment options (e.g. Cisplatin/Parp Inhibitors) that are gaining traction for the treatment of TNBC. Conclusions: This study highlights the important role played by Pin1 in TNBC and highlights the context-dependent functions in modulating cell growth and response to treatment.
Triple-negative breast cancer (TNBC) remains the most lethal breast cancer subtype with poor response rates to the current chemotherapies and a lack of additional effective treatment options. We have identified deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase) as a critical gatekeeper that protects tumour DNA from the genotoxic misincorporation of uracil during treatment with standard chemotherapeutic agents commonly used in the FEC regimen. dUTPase catalyses the hydrolytic dephosphorylation of deoxyuridine triphosphate (dUTP) to deoxyuridine monophosphate (dUMP), providing dUMP for thymidylate synthase as part of the thymidylate biosynthesis pathway and maintaining low intracellular dUTP concentrations. This is crucial as DNA polymerase cannot distinguish between dUTP and deoxythymidylate triphosphate (dTTP), leading to dUTP misincorporation into DNA. Targeting dUTPase and inducing uracil misincorporation during the repair of DNA damage induced by fluoropyrimidines or anthracyclines represents an effective strategy to induce cell lethality. dUTPase inhibition significantly sensitised TNBC cell lines to fluoropyrimidines and anthracyclines through imbalanced nucleotide pools and increased DNA damage leading to decreased proliferation and increased cell death. These results suggest that repair of treatment-mediated DNA damage requires dUTPase to prevent uracil misincorporation and that inhibition of dUTPase is a promising strategy to enhance the efficacy of TNBC chemotherapy.
Background Dupuytren’s contracture is a fibro-proliferative disease of the hands affecting over 2 million UK adults, particularly the white, male population. Surgery is the traditional treatment; however, recent studies have indicated that an alternative to surgery—collagenase clostridium histolyticum (collagenase)—is better than a placebo in the treatment of Dupuytren’s contracture. There is however no robust randomised controlled trial that provides a definitive answer on the clinical effectiveness of collagenase compared with limited fasciectomy surgery. Dupuytren’s intervention surgery vs collagenase trial (DISC) trial was therefore designed to fill this evidence gap. Methods/design The DISC trial is a multi-centre pragmatic two-arm parallel-group, randomised controlled trial. Participants will be assigned 1:1 to receive either collagenase injection or surgery (limited fasciectomy). We aim to recruit 710 adult participants with Dupuytren’s contracture. Potential participants will be identified in primary and secondary care, screened by a delegated clinician and if eligible and consenting, baseline data will be collected and randomisation completed. The primary outcome will be the self-reported patient evaluation measure assessed 1 year after treatment. Secondary outcome measures include the Unité Rhumatologique des Affections de la Main Scale, the Michigan Hand Questionnaire, EQ-5D-5L, resource use, further procedures, complications, recurrence, total active movement and extension deficit, and time to return to function. Given the limited evidence comparing recurrence rates following collagenase injection and limited fasciectomy, and the importance of a return to function as soon as possible for patients, the associated measures for each will be prioritised to allow treatment effectiveness in the context of these key elements to be assessed. An economic evaluation will assess the cost-effectiveness of treatments, and a qualitative sub-study will assess participants’ experiences and preferences of the treatments. Discussion The DISC trial is the first randomised controlled trial, to our knowledge, to investigate the clinical and cost-effectiveness of collagenase compared to limited fasciectomy surgery for patients with Dupuytren’s contracture. Trial registration Clinical.Trials.gov ISRCTN18254597. Registered on April 11, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.