Recombinant adeno-associated virus (rAAV) vectors were evaluated for gene transfer into the skeletal muscle of adult immunocompetent mice. A study using a vector encoding nuclear localized beta-galactosidase (rAAV-nls-lacZ) examined: (i) the efficiency and duration of transgene expression; (ii) the status of the AAV genome in the transduced fibers; and (iii) the possibility of improving gene transfer by inducing muscle regeneration. In the absence of regeneration, the injection of 1.7 x 10(7) particles in the quadriceps resulted in gene transfer to 10-70% of myofibers. Histological analysis indicated that the vector was able to reach myofiber nuclei distant from the injection point. Cellular infiltrates were absent at early time points but became conspicuous in the vicinity of some positive fibers at 4-8 weeks and subsided by 26 weeks. Southern analysis indicated that one to three copies of the vector genome were present per cell genome equivalent. They were associated with high-molecular-weight DNA in the form of tandem oligomers or interlocked circles. Gene transfer was not facilitated in the regenerating muscle. Rather, an early inflammatory response resulted in the elimination of most positive fibers after 8 weeks. The presence of regenerated fibers with beta-galactosidase-positive nuclei suggested that myoblasts had been transduced and were able to fuse to form new fibers. Gene transfer in the absence of immune reactions against the transgene product was studied by injecting mice with a rAAV carrying the murine erythropoietin (mEpo) cDNA. Dose-dependent elevation in the hematocrit was measured for over 200 days and corresponded to 5- to 20-fold increases in plasma Epo levels. We conclude that AAV vectors efficiently and stably transduce post-mitotic muscle fibers and myoblasts in vivo.
The skeletal muscle provides a very permissive physiological environment for adeno-associated virus (AAV) type 2-mediated gene transfer. We have studied the early steps leading to the establishment of permanent transgene expression, after injection of recombinant AAV (rAAV) particles in the quadriceps muscle of mice. The animals received an rAAV encoding a secreted protein, murine erythropoietin (mEpo), under the control of the human cytomegalovirus major immediate-early promoter and were sacrificed between 1 and 60 days after injection. The measurement of plasma Epo levels and of hematocrits indicated a progressive increase of transgene expression over the first 2 weeks, followed by a stabilization at maximal plateau values. The rAAV sequences were analyzed by Southern blotting following neutral or alkaline gel electrophoresis of total DNA from injected muscles. While a high number of rAAV sequences were detected during the first 5 days following the injection, only a few percent of these sequences was retained in the animals analyzed after 2 weeks, in which transgene expression was maximal. Double-stranded DNA molecules resulting from de novo second-strand synthesis were detected as early as day 1, indicating that this crucial step of AAV-mediated gene transfer is readily accomplished in the muscle. The templates driving stable gene expression at later time points are low in copy number and structured as high-molecular-weight concatemers or interlocked circles. The presence of the circular form of the rAAV genomes at early time points suggests that the molecular transformations involved in the formation of stable concatemers may involve a rolling-circle type of DNA replication.
Background Recombinant adeno‐associated viral (rAAV) vectors are capable of long‐term expression of secreted and intracellular proteins following delivery to muscle, liver, and the central nervous system. In this study, we have evaluated subcutaneous injection of rAAV encoding a variety of transgenes as an alternative route of administration for the systemic delivery of therapeutic proteins. Methods rAAV vectors encoding the human factor IX, human interferon‐α2a, murine erythropoietin (epo), and Escherichia coli lacZ genes were used for subcutaneous delivery into mature immunocompetent mice. Expression of factor IX and interferon in mouse serum was measured by ELISA. Expression of Epo was monitored by an increase in hemotocrit and by RIA. The tissue tropism of AAV transduction was determined by histochemistry following administration of the lacZ vector. Results Long‐term protein expression (at least one year) is demonstrated in the serum of immunocompetent mice following subcutaneous delivery of AAV vectors encoding the human factor IX and interferon genes. The murine epo gene delivered via this route resulted in levels of Epo that correlate with increased hematocrits of up to 90% for a duration of nine months. rAAV encoding the lacZ gene revealed that the panniculus carnosus, a skeletal muscle layer of the skin, was transduced upon subcutaneous administration. Conclusions This study shows that long‐term expression of secreted proteins can be achieved using rAAV vectors injected subcutaneously as a single administration. The observation that the panniculus carnosus is the primary tissue transduced by rAAV illustrates the high tropism of rAAV for skeletal muscle. Copyright © 1999 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.