Quasi-Elastic Neutron Scattering (QENS) experiments were carried out to determine (a) Fick diffusivity, D (b) self-diffusivity, Dself, and (c) 1/Gamma, the inverse of the thermodynamic correction factor, for n-hexane (nC6) and n-heptane (nC7) in MFI zeolite (all silica silicalite-1) at 300 K for a variety of loadings. These experimental results are compared with configurational-bias Monte Carlo (CBMC) and molecular dynamics (MD) simulations of, respectively, the adsorption isotherms and diffusivities. For n-hexane, the CBMC simulated isotherm shows a slight inflection at a loading=4 molecules per unit cell; this inflection manifests, also, in the loading dependence of 1/Gamma, obtained from QENS. The trend in the loading dependence of the Fick D and Dself of nC6 obtained from QENS matches the MD simulation results. For nC7 the CBMC simulated isotherm shows a strong inflection at a loading=4 molecules per unit cell. At this loading=4, 1/Gamma tends to zero and there is a very good match between QENS and molecular simulations for the loading dependence of 1/Gamma. Both MD simulations and QENS data on the Fick diffusivity shows a sharp maximum at a loading in the region of=4. For both nC6 and nC7 the simulated values of diffusivity are about an order of magnitude higher than those determined from QENS.
Transport in Porous Media (2005) 61:77-91Abstract. The objective of this work is to evaluate the prediction accuracy of network modeling to calculate transport properties of porous media based on the interpretation of mercury invasion capillary pressure curves only. A pore-scale modeling approach is used to model the multi-phase flow and calculate gas/oil relative permeability curves. The characteristics of the 3-D pore-network are defined with the requirement that the network model satisfactorily reproduces the capillary pressure curve (P c curve), the porosity and the permeability. A sensitivity study on the effect of the input parameters on the prediction of capillary pressure and gas/oil relative permeability curves is presented. The simulations show that different input parameters can lead to similarly good reproductions of the experimental P c , although the predicted relative permeabilities K r are somewhat widespread. This means that the information derived from a mercury invasion P c curve is not sufficient to characterize transport properties of a porous medium. The simulations indicate that more quantitative information on the wall roughness and the node/bond aspect ratio would be necessary to better constrain the problem. There is also evidence that in narrow pore size distributions pore body volume and pore throat radius are correlated while in broad pore size distributions they would be uncorrelated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.