This study investigated the enzymatic function of two putative plant GPXs, GPXle1 from Lycopersicon esculentum and GPXha2 from Helianthus annuus, which show sequence identities with the mammalian phospholipid hydroperoxide glutathione peroxidase (PHGPX). Both purified recombinant proteins expressed in Escherichia coli show PHGPX activity by reducing alkyl, fatty acid and phospholipid hydroperoxides but not hydrogen peroxide in the presence of glutathione. Interestingly, both recombinant GPXle1 and GPXha2 proteins also reduce alkyl, fatty acid and phospholipid hydroperoxides as well as hydrogen peroxide using thioredoxin as reducing substrate. Moreover, thioredoxin peroxidase (TPX) activities were found to be higher than PHGPX activities in terms of efficiency and substrate affinities, as revealed by their respective V max and K m values. We therefore conclude that these two plant GPX-like proteins are antioxidant enzymes showing PHGPX and TPX activities.
Self-supporting plant stems are slender, erect structures that remain standing while growing in highly variable mechanical environments. Such ability is not merely related to an adapted mechanical design in terms of material-specific stiffness and stem tapering. As many terrestrial standing animals do, plant stems regulate posture through active and coordinated control of motor systems and acclimate their skeletal growth to prevailing loads. This analogy probably results from mechanical challenges on standing organisms in an aerial environment with low buoyancy and high turbulence. But the continuous growth of plants submits them to a greater challenge. In response to these challenges, land plants implemented mixed skeletal and motor functions in the same anatomical elements. There are two types of kinematic design: (1) plants with localized active movement (arthrophytes) and (2) plants with continuously distributed active movements (contortionists). The control of these active supporting systems involves gravi- and mechanoperception, but little is known about their coordination at the whole plant level. This more active view of the control of plant growth and form has been insufficiently considered in the modeling of plant architecture. Progress in our understanding of plant posture and mechanical acclimation will require new biomechanical models of plant architectural development.
Mechanosensitive control of plant growth is a major process shaping how terrestrial plants acclimate to the mechanical challenges set by wind, self-weight, and autostresses. Loads acting on the plant are distributed down to the tissues, following continuum mechanics. Mechanosensing, though, occurs within the cell, building up into integrated signals; yet the reviews on mechanosensing tend to address macroscopic and molecular responses, ignoring the biomechanical aspects of load distribution to tissues and reducing biological signal integration to a "mean plant cell." In this chapter, load distribution and biological signal integration are analyzed directly. The Sum of Strain Sensing model S 3 m is then discussed as a synthesis of the state of the art in quantitative deterministic knowledge and as a template for the development of an integrative and system mechanobiology
p-Hydroxyphenylpyruvate dioxygenase catalyses the transformation of p-hydroxyphenylpyruvate into homogentisate. In plants this enzyme has a crucial role because homogentisate is the aromatic precursor of all prenylquinones. Furthermore this enzyme was recently identified as the molecular target for new families of potent herbicides. In this study we examine precisely the localization of p-hydroxyphenylpyruvate dioxygenase activity within carrot cells. Our results provide evidence that, in cultured carrot cells, p-hydroxyphenylpyruvate dioxygenase is associated with the cytosol. Purification and SDS/PAGE analysis of this enzyme revealed that its activity is associated with a polypeptide of 45–46 kDa. This protein specifically cross-reacts with an antiserum raised against the p-hydroxyphenylpyruvate dioxygenase of Pseudomonas fluorescens. Gel-filtration chromatography indicates that the enzyme behaves as a homodimer. We also report the isolation and nucleotide sequence of a cDNA encoding a carrot p-hydroxyphenylpyruvate dioxygenase. The nucleotide sequence (1684 bp) encodes a protein of 442 amino acid residues with a molecular mass of 48094 Da and shows specific C-terminal regions of similarity with other p-hydroxyphenylpyruvate dioxygenases. This cDNA encodes a functional p-hydroxyphenylpyruvate dioxygenase, as evidenced by expression studies with transformed Escherichia coli cells. Comparison of the N-terminal sequence of the 45–46 kDa polypeptide purified from carrot cells with the deduced peptide sequence of the cDNA confirms that this polypeptide supports p-hydroxyphenylpyruvate dioxygenase activity. Immunodetection studies of the native enzyme in carrot cellular extracts reveal that N-terminal proteolysis occurs during the process of purification. This proteolysis explains the difference in molecular masses between the purified protein and the deduced polypeptide.
When pea (Pisum sativum 1. var Douce Provence) plants are shifted from a normal growth temperature of 25'C up to 40'C for 3 h, a nove1 22-kD protein is produced and accumulates in the matrix compartment of green leaf mitochondria. HSP22 was purified and used as antigen to prepare guinea pig antiserum. The expression of HSP22 was studied using immunodetection methods.HSP22 is a nuclear-encoded protein de novo synthesized in heatstressed pea plants. The heat-shock response is rapid and can be detected as early as 30 min after the temperature is raised. On the other hand, HSP22 declines very slowly after pea leaves have been transferred back to 25°C. After 100 h at 25'C, the heat-shock pattern was undetectable. The precise localization of HSP22 was investigated and we demonstrated that HSP22 was found only in mitochondria, where it represents 1 to 2% of total matrix proteins. However, the indudion of HSP22 does not seem to be tissue specific, since the protein was detected in green or etiolated pea leaves as well as in pea roots. Finally, examination of matrix extracts by nondenaturing polyacrylamide gel eledrophoresis and immunoblotting with anti-HSP22 serum revealed a high-molecular mass heat-shock protein complex of 230 kD, which contains HSP22.from heat-stressed pea (Pisum sativum L.) leaves (pea plants treated at 4OoC for 3 h). We also report the accumulation rate of HSP22 during the stress period and its stability with time after the heat exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.