To create mice expressing exclusively human sickle hemoglobin (HbS), transgenic mice expressing human alpha-, gamma-, and betaS-globin were generated and bred with knockout mice that had deletions of the murine alpha- and beta-globin genes. These sickle cell mice have the major features (irreversibly sickled red cells, anemia, multiorgan pathology) found in humans with sickle cell disease and, as such, represent a useful in vivo system to accelerate the development of improved therapies for this common genetic disease.
Mutations at the alpha-globin locus are the most common class of mutations in humans, with deletion of all four adult alpha-globin genes resulting in the perinatal lethal condition haemoglobin Barts hydrops fetalis. Using gene targeting in mice, we have deleted a 16 kilobase region encompassing both adult alpha-globin genes. Animals homozygous for this deletion become hydropic and die late in gestation mimicking humans with hydrops fetalis. Introduction of a human alpha-globin transgene rescued these animals from perinatal death thus demonstrating the utility of this murine model in the development of cellular and gene based approaches for treating this human genetic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.