Significant changes have occurred in the well‐established partnership between fisheries managers and geneticists over the last 50 years. It is therefore timely to review and recalibrate the ways in which genetic technologies can assist the fishing industry to maintain productive and sustainable harvests. Our objective is to contribute to the mutual understanding of all stakeholders in the genetics–management partnership. Genetic technologies that are relevant to fisheries management are grouped into eleven themes, which are described in plain language for a non‐specialist audience. The role that the genetic information plays in fisheries management is explained, along with an assessment of the challenges and barriers that may be preventing the uptake of the information into the fisheries management process. The compelling conclusion is that genetics offers a diverse collection of versatile and useful tools for informing fisheries managers about issues that have a biological basis. Presently, mainstream use of genetic tools focuses on a narrow set of fisheries management issues, but the diversity of genetic tools and the novel issues they can address indicates that uptake will grow, particularly as communication between geneticists and end‐users improves.
Marine ecosystems evolve under many interconnected and area-specific pressures. To fulfil society's intensifying and diversifying needs while ensuring ecologically sustainable development, more effective marine spatial planning and broader-scope management of marine resources is necessary. Integrated ecological-economic fisheries models (IEEFMs) of marine systems are needed to evaluate impacts and sustainability of potential management actions and understand, and anticipate ecological, economic and social dynamics at a range of scales from local to national and regional. To make these models most effective, it is important to determine how model characteristics and methods of communicating results influence the model implementation, the nature of the advice that can be provided and the impact on decisions taken by managers. This article presents a global review and comparative evaluation of 35 IEEFMs applied to marine fisheries and marine ecosystem resources to identify the characteristics that determine their usefulness, effectiveness and implementation. The focus is on fully integrated models that allow for feedbacks between ecological and human processes although not all the models reviewed achieve that. Modellers must invest more time to make models user friendly and to participate in management fora where models and model results can be explained and discussed. Such involvement is beneficial to all parties, leading to improvement of models and more effective implementation of advice, but demands substantial resources which must be built into the governance process. It takes time to develop effective processes for using IEEFMs requiring a long-term commitment to integrating multidisciplinary modelling advice into management decision-making. K E Y W O R D Sbio-economic models, comparative model evaluation, fisheries management advice, integrated ecological-economic fisheries models, marine spatial planning and cross-sector management, performance criteria and scales and risks, use and acceptance and implementation and communication and flexibility and complexity | INTRODUCTIONThere is a growing need for tools to evaluate policies and assess tradeoffs in management of marine resources and provision of ecosystem services such as fishing, aquaculture, renewable energy, shipping, conservation and recreation (Cormier, Kannen, Elliott, & Hall, 2015;Degnbol & Wilson, 2008;EU 2014;Langlois, Fréon, Steyer, Delgenés, & Hélias, 2014;White et al., 2012). It is necessary to elaborate and apply common principles and broader, interdisciplinary management evaluation in the use of marine space involving several types of activities and sectors Soma et al., 2013;Stelzenmüller et al., 2013;Sundblad et al., 2014). Policymakers need to know the costs and benefits of conserving ecosystem goods and services to manage them sustainably. Moreover, according to an ecosystembased approach to management, specific pressures, associated uncertainties and risks need to be taken into account (Douvere, 2008;Ehler & Douvere, 2009;Gi...
While international agreements and legislation call for incorporation of four pillars of sustainability, the social (including cultural), economic and institutional aspects (the ‘human dimension’) have been relatively neglected to date. Three key impediments have been identified: a relative lack of explicit social, economic and institutional objectives; a general lack of process (frameworks, governance) for routine integration of all four pillars of sustainability; and a bias towards biological considerations. Practical integration requires a ‘systems’ approach with explicit consideration of strategic and operational aspects of management; multidisciplinary or transdisciplinary evaluations; practical objectives for the four pillars of sustainability; appropriate participation; and a governance system that is able to integrate these diverse considerations in management. We challenge all involved in fisheries to immediately take five practical steps toward integrating ecological, economic, social and institutional aspects: (1) Adopt the perspective of the fishery as a ‘system’ with interacting natural, human and management elements; (2) Be aware of both strategic and operational aspects of fisheries assessment and management; (3) Articulate overarching objectives that incorporate all four pillars of sustainability; (4) Encourage appropriate (and diverse) disciplinary participation in all aspects of research, evaluation and management; and (5) Encourage development of (or emulate) participatory governance.
Models provide useful insights into conservation and resource management issues and solutions. Their use to date has highlighted conditions under which no-take marine protected areas (MPAs) may help us to achieve the goals of ecosystem-based management by reducing pressures, and where they might fail to achieve desired goals. For example, static reserve designs are unlikely to achieve desired objectives when applied to mobile species or when compromised by climate-related ecosystem restructuring and range shifts. Modelling tools allow planners to explore a range of options, such as basing MPAs on the presence of dynamic oceanic features, and to evaluate the potential future impacts of alternative interventions compared with ‘no-action’ counterfactuals, under a range of environmental and development scenarios. The modelling environment allows the analyst to test if indicators and management strategies are robust to uncertainties in how the ecosystem (and the broader human–ecosystem combination) operates, including the direct and indirect ecological effects of protection. Moreover, modelling results can be presented at multiple spatial and temporal scales, and relative to ecological, economic and social objectives. This helps to reveal potential ‘surprises', such as regime shifts, trophic cascades and bottlenecks in human responses. Using illustrative examples, this paper briefly covers the history of the use of simulation models for evaluating MPA options, and discusses their utility and limitations for informing protected area management in the marine realm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.