The James Webb Space Telescope (JWST) is a large, infrared space telescope that has recently started its science program which will enable breakthroughs in astrophysics and planetary science. Notably, JWST will provide the very first observations of the earliest luminous objects in the universe and start a new era of exoplanet atmospheric characterization. This transformative science is enabled by a 6.6 m telescope that is passively cooled with a 5 layer sunshield. The primary mirror is comprised of 18 controllable, low areal density hexagonal segments, that were aligned and phased relative to each other in orbit using innovative image-based wave front sensing and control algorithms. This revolutionary telescope took more than two decades to develop with a widely distributed team across engineering disciplines. We present an overview of the telescope requirements, architecture, development, superb on-orbit performance, and lessons learned. JWST successfully demonstrates a segmented aperture space telescope and establishes a path to building even larger space telescopes.
Dispersed fringe sensing (DFS) is an efficient and robust method for coarse phasing of segmented primary mirrors (from one quarter of a wavelength to as much as the depth of focus of a single segment, typically several tens of microns). Unlike phasing techniques currently used for ground-based segmented telescopes, DFS does not require the use of edge sensors in order to sense changes in the relative heights of adjacent segments; this makes it particularly well suited for phasing of space-borne segmented telescopes, such as the James Webb Space Telescope. We validate DFS by using it to measure the piston errors of the segments of one of the Keck telescopes. The results agree with those of the Shack-Hartmann-based phasing scheme currently in use at Keck to within 2% over a range of initial piston errors of +/-16 microm.
We have developed and tested extensively three different methods for phasing the primary mirror segments of the Keck telescopes. Two of these, referred to as the broadband and narrowband algorithms respectively, are physical optics generalizations of the Shack-Hartmann technique. The third, Phase Discontinuity Sensing (PDS), is a physical optics generalization of curvature sensing. We evaluate and compare experimental results with these techniques with regard to capture range (as large as 30 pm) , run-to-run variation (as small as 6 nm) , execution time (as short as twenty minutes) , systematic errors, ease of implementation, and other factors, in the context of the Keck telescopes and also of future very large ground-based telescopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.