Few studies have examined systematic relationships of right whales (Eubalaena spp.) since the original species descriptions, even though they are one of the most endangered large whales. Little morphological evidence exists to support the current species designations for Eubalaena glacialis in the northern hemisphere and E. australis in the southern hemisphere. Differences in migratory behaviour or antitropical distribution between right whales in each hemisphere are considered a barrier to gene flow and maintain the current species distinctions and geographical populations. However, these distinctions between populations have remained controversial and no study has included an analysis of all right whales from the three major ocean basins. To address issues of genetic differentiation and relationships among right whales, we have compiled a database of mitochondrial DNA control region sequences from right whales representing populations in all three ocean basins that consist of: western North Atlantic E. glacialis, multiple geographically distributed populations of E. australis and the first molecular analysis of historical and recent samples of E. glacialis from the western and eastern North Pacific Ocean. Diagnostic characters, as well as phylogenetic and phylogeographic analyses, support the possibility that three distinct maternal lineages exist in right whales, with North Pacific E. glacialis being more closely related to E. australis than to North Atlantic E. glacialis. Our genetic results provide unequivocal character support for the two usually recognized species and a third distinct genetic lineage in the North Pacific under the Phylogenetic Species Concept, as well as levels of genetic diversity among right whales world-wide.
The population structure and mitochondrial (mt) DNA diversity of southern right whales (Eubalaena australis) are described from 146 individuals sampled on 4 winter calving grounds (Argentina, South Africa, Western Australia, and the New Zealand sub-Antarctic) and 2 summer feeding grounds (South Georgia and south of Western Australia). Based on a consensus region of 275 base pairs of the mtDNA control region, 37 variable sites defined 37 unique haplotypes, of which only one was shared between regional samples of the Indo-Pacific and South Atlantic Oceans. Phylogenetic reconstruction of the southern right whale haplotypes revealed 2 distinct clades that differed significantly in frequencies between oceans. An analysis of molecular variance confirmed significant overall differentiation among the 4 calving grounds at both the haplotype and the nucleotype levels (F(ST) = 0.159; Phi(ST) = 0.238; P < 0.001). Haplotype diversity was significantly lower in the Indo-Pacific (h = 0.701 +/- 0.037) compared with the South Atlantic (h = 0.948 +/- 0.013), despite a longer history of exploitation and larger catches in the South Atlantic. In fact, the haplotype diversity in the Indo-Pacific basin was similar to that of the North Atlantic right whale that currently numbers about 300 animals. Multidimensional scaling of genetic differentiation suggests that gene flow occurred primarily between adjacent calving grounds within an ocean basin, with mixing of lineages from different calving grounds occurring on feeding grounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.